Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(42): 95673-95691, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37556061

RESUMO

Although metal-organic frameworks (MOFs) are a viable choice for photocatalysts with large surface area and tunable pore structure, the rapid recombination of excited photogenerated charges results in low activity towards photodegradation. Aiming at improving the photocatalytic activities of MOFs, different strategies to incorporate MOF with light-harvesting semiconductors have been developed. In this research, we report an effective photocatalyst designed by incorporating Cu-MOF with ZnO for the photocatalytic degradation of Rose Bengal exhibiting excellent degradation efficiency of 97.4% in 45 min under natural sunlight with catalyst dosage of 320 mg/L. The optical, morphology and surface characteristics of the prepared nanocomposite were studied using scanning electron microscopy (SEM-EDX), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET) analysis, thermogravimetric (TGA) analysis, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and ultraviolet diffused reflectance spectroscopy (UV-DRS) techniques. Further studies showed that the degradation followed first-order kinetics with a rate constant of 0.077869 min-1. The degradation mechanism was investigated by photoluminescence (PL) study, XPS, zeta potential and quenching experiment in presence of different scavengers. Meanwhile, the fabricated composite displayed good recovery and reuse properties up to 5 cycles as revealed by XRD analysis proving itself a potential MOF-based photocatalyst towards environmental remediation process.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Nanocompostos/química , Fotólise , Espectroscopia Fotoeletrônica
2.
Environ Res ; 236(Pt 1): 116702, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490976

RESUMO

Environmental pollution and energy crisis have recently become one of the major global concerns. Insincere discharge of massive amount of organic and inorganic wastes into the aqueous bodies causes serious impact on our environment. However, these organic substances are significant sources of carbon and energy that could be sustainably utilized rather than being discarded. Photocatalytic fuel cell (PFC) is a smart and novel energy conversion device that has the ability to achieve dual benefits: degrading the organic contaminants and simultaneously generating electricity, thereby helping in environmental remediation. This article presents a detailed study of the recent advancements in the development of PFC systems and focuses on the fundamental working principles of PFCs. The degradation of various common organic and inorganic contaminants including dyes and antibiotics with simultaneous power generation and hydrogen evolution has been outlined. The impact of various operational factors on the PFC activity has also been briefly discussed. Moreover, it provides an overview of the design guidelines of the different PFC systems that has been developed recently. It also includes a mention of the materials employed for the construction of the photo electrodes and highlights the major limitations and relevant research scopes that are anticipated to be of interest in the days to come. The review is intended to serve as a handy resource for researchers and budding scientists opting to work in this area of PFC devices.


Assuntos
Poluentes Ambientais , Eletricidade , Águas Residuárias , Carbono , Poluição Ambiental
3.
Chemosphere ; 304: 135261, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35697109

RESUMO

With the growth of globalization which has been the primary cause of water pollution, it is utmost necessary for us living being to have access to clean water for the purpose of drinking, washing and various other useful applications. With the purpose of future security and to restore our ecological balance, it is essential to give much significance towards the removal of unwanted toxic contaminants from our water resources. In this regard adsorptive removal of toxic pollutants from wastewater with porous adsorbent is regarded as one of the most promising way for water decontamination process. Metal organic frameworks (MOFs) comprising of uniformly arranged pores, abundant active sites and containing an easily tunable structure has aroused as a promising material for adsorbent to remove the unwanted contaminants from water sources. The adsorption of pollutants by the different MOFs surface are driven by various interactions including π-π, acid-base, electrostatic and H-bonding etc. On the other hand, the removal of various contaminants by MOFs is influenced by various factors including pH, temperature and initial concentration. In this review we will specifically discuss the adsorptive removal of different organic and inorganic pollutants present in our water systems with the use of MOFs as adsorbent along with the various factors and interaction mechanism manipulating the adsorption behaviour.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Poluentes Ambientais/química , Estruturas Metalorgânicas/química , Águas Residuárias , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA