Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
SLAS Technol ; 29(2): 100121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340892

RESUMO

A major aim in the field of synthetic biology is developing tools capable of responding to user-defined inputs by activating therapeutically relevant cellular functions. Gene transcription and regulation in response to external stimuli are some of the most powerful and versatile of these cellular functions being explored. Motivated by the success of chimeric antigen receptor (CAR) T-cell therapies, transmembrane receptor-based platforms have been embraced for their ability to sense extracellular ligands and to subsequently activate intracellular signal transduction. The integration of transmembrane receptors with transcriptional activation platforms has not yet achieved its full potential. Transient expression of plasmid DNA is often used to explore gene regulation platforms in vitro. However, applications capable of targeting therapeutically relevant endogenous or stably integrated genes are more clinically relevant. Gene regulation may allow for engineered cells to traffic into tissues of interest and secrete functional proteins into the extracellular space or to differentiate into functional cells. Transmembrane receptors that regulate transcription have the potential to revolutionize cell therapies in a myriad of applications, including cancer treatment and regenerative medicine. In this review, we will examine current engineering approaches to control transcription in mammalian cells with an emphasis on systems that can be selectively activated in response to extracellular signals. We will also speculate on the potential therapeutic applications of these technologies and examine promising approaches to expand their capabilities and tighten the control of gene regulation in cellular therapies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Regulação da Expressão Gênica , Animais , Transdução de Sinais , Ligantes , Mamíferos
2.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745327

RESUMO

Protein phosphorylation signaling networks play a central role in how cells sense and respond to their environment. Here, we describe the engineering of artificial phosphorylation networks in which "push-pull" motifs-reversible enzymatic phosphorylation cycles consisting of opposing kinase and phosphatase activities-are assembled from modular protein domain parts and then wired together to create synthetic phosphorylation circuits in human cells. We demonstrate that the composability of our design scheme enables model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, while downstream connections can regulate gene expression. We leverage these capabilities to engineer cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach for designing and building phosphorylation signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.

3.
Science ; 356(6336): 438-442, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28408723

RESUMO

Rapid, inexpensive, and sensitive nucleic acid detection may aid point-of-care pathogen detection, genotyping, and disease monitoring. The RNA-guided, RNA-targeting clustered regularly interspaced short palindromic repeats (CRISPR) effector Cas13a (previously known as C2c2) exhibits a "collateral effect" of promiscuous ribonuclease activity upon target recognition. We combine the collateral effect of Cas13a with isothermal amplification to establish a CRISPR-based diagnostic (CRISPR-Dx), providing rapid DNA or RNA detection with attomolar sensitivity and single-base mismatch specificity. We use this Cas13a-based molecular detection platform, termed Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK), to detect specific strains of Zika and Dengue virus, distinguish pathogenic bacteria, genotype human DNA, and identify mutations in cell-free tumor DNA. Furthermore, SHERLOCK reaction reagents can be lyophilized for cold-chain independence and long-term storage and be readily reconstituted on paper for field applications.


Assuntos
Bactérias/isolamento & purificação , Proteínas de Bactérias/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Bacteriano/análise , Vírus da Dengue/isolamento & purificação , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , Ribonucleases/química , Zika virus/isolamento & purificação , Bactérias/patogenicidade , DNA Tumoral Circulante/análise , DNA Tumoral Circulante/genética , Dengue/diagnóstico , Vírus da Dengue/genética , Humanos , Mutação , Neoplasias/genética , Clivagem do RNA , RNA Viral/genética , Zika virus/genética , Infecção por Zika virus/diagnóstico
4.
Nat Chem Biol ; 13(2): 202-209, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27941759

RESUMO

Engineered cell-based therapies comprise a promising emerging strategy for treating diverse diseases. Realizing this promise requires new tools for engineering cells to sense and respond to soluble extracellular factors, which provide information about both physiological state and the local environment. Here, we report such a biosensor engineering strategy, leveraging a self-contained receptor-signal transduction system termed modular extracellular sensor architecture (MESA). We developed MESA receptors that enable cells to sense vascular endothelial growth factor (VEGF) and, in response, secrete interleukin 2 (IL-2). By implementing these receptors in human T cells, we created a customized function not observed in nature-an immune cell that responds to a normally immunosuppressive cue (VEGF) by producing an immunostimulatory factor (IL-2). Because this platform utilizes modular, engineerable domains for ligand binding (antibodies) and output (programmable transcription factors based upon Cas9), this approach may be readily extended to novel inputs and outputs. This generalizable approach for rewiring cellular functions could enable both translational applications and fundamental biological research.


Assuntos
Anticorpos/imunologia , Técnicas Biossensoriais , Linfócitos T/imunologia , Fatores de Transcrição/imunologia , Humanos , Interleucina-2/biossíntese , Interleucina-2/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia
5.
Cell ; 165(5): 1255-1266, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27160350

RESUMO

The recent Zika virus outbreak highlights the need for low-cost diagnostics that can be rapidly developed for distribution and use in pandemic regions. Here, we report a pipeline for the rapid design, assembly, and validation of cell-free, paper-based sensors for the detection of the Zika virus RNA genome. By linking isothermal RNA amplification to toehold switch RNA sensors, we detect clinically relevant concentrations of Zika virus sequences and demonstrate specificity against closely related Dengue virus sequences. When coupled with a novel CRISPR/Cas9-based module, our sensors can discriminate between viral strains with single-base resolution. We successfully demonstrate a simple, field-ready sample-processing workflow and detect Zika virus from the plasma of a viremic macaque. Our freeze-dried biomolecular platform resolves important practical limitations to the deployment of molecular diagnostics in the field and demonstrates how synthetic biology can be used to develop diagnostic tools for confronting global health crises. PAPERCLIP.


Assuntos
Técnicas de Diagnóstico Molecular/métodos , Infecção por Zika virus/diagnóstico , Zika virus/isolamento & purificação , Animais , Sangue/virologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Simulação por Computador , Dengue/diagnóstico , Dengue/virologia , Técnicas Genéticas , Macaca mulatta , Técnicas de Diagnóstico Molecular/economia , RNA Viral/isolamento & purificação , Zika virus/classificação , Zika virus/genética , Infecção por Zika virus/virologia
6.
J Biol Chem ; 290(14): 8764-77, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25694428

RESUMO

Toll-like receptors (TLRs) mediate immune recognition of both microbial infections and tissue damage. Aberrant TLR signaling promotes disease; thus, understanding the regulation of TLR signaling is of medical relevance. Although downstream mediators of TLR signaling have been identified, the detailed mechanism by which ligand binding-mediated dimerization induces downstream signaling remains poorly understood. Here, we investigate this question for TLR4, which mediates responsiveness to bacterial LPS and drives inflammatory disease. TLR4 exhibits structural and functional features that are unique among TLRs, including responsiveness to a wide variety of ligands. However, the connection between these structural features and the regulation of signaling is not clear. Here, we investigated how the unique intracellular structures of TLR4 contribute to receptor signaling. Key conclusions include the following. 1) The unique intracellular linker of TLR4 is important for achieving LPS-inducible signaling via Toll/IL-1 receptor (TIR) domain-containing adapter-inducing interferon-ß (TRIF) but less so for signaling via myeloid differentiation primary response 88 (MyD88). 2) Membrane-bound TLR4 TIR domains were sufficient to induce signaling. However, introducing long, flexible intracellular linkers neither induced constitutive signaling nor ablated LPS-inducible signaling. Thus, the initiation of TLR4 signaling is regulated by a mechanism that does not require tight geometric constraints. Together, these observations necessitate refining the model of TLR4 signal initiation. We hypothesize that TLR4 may interact with an inhibitory partner in the absence of ligand, via both TIR and extracellular domains of TLR4. In this speculative model, ligand binding induces dissociation of the inhibitory partner, triggering spontaneous, switchlike TIR domain homodimerization to initiate downstream signaling.


Assuntos
Técnicas Biossensoriais , Receptor 4 Toll-Like/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Macrófagos/metabolismo , Camundongos , Dados de Sequência Molecular , Transdução de Sinais , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
7.
ACS Synth Biol ; 3(12): 892-902, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24611683

RESUMO

Engineering mammalian cell-based devices that monitor and therapeutically modulate human physiology is a promising and emerging frontier in clinical synthetic biology. However, realizing this vision will require new technologies enabling engineered circuitry to sense and respond to physiologically relevant cues. No existing technology enables an engineered cell to sense exclusively extracellular ligands, including proteins and pathogens, without relying upon native cellular receptors or signal transduction pathways that may be subject to crosstalk with native cellular components. To address this need, we here report a technology we term a Modular Extracellular Sensor Architecture (MESA). This self-contained receptor and signal transduction platform is maximally orthogonal to native cellular processes and comprises independent, tunable protein modules that enable performance optimization and straightforward engineering of novel MESA that recognize novel ligands. We demonstrate ligand-inducible activation of MESA signaling, optimization of receptor performance using design-based approaches, and generation of MESA biosensors that produce outputs in the form of either transcriptional regulation or transcription-independent reconstitution of enzymatic activity. This systematic, quantitative platform characterization provides a framework for engineering MESA to recognize novel ligands and for integrating these sensors into diverse mammalian synthetic biology applications.


Assuntos
Receptores de Superfície Celular , Transdução de Sinais , Biologia Sintética/métodos , Técnicas Biossensoriais , Células HEK293 , Humanos
8.
J Biomed Biotechnol ; 2010: 232016, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21052559

RESUMO

Synthetic biology is a nascent technical discipline that seeks to enable the design and construction of novel biological systems to meet pressing societal needs. However, engineering biology still requires much trial and error because we lack effective approaches for connecting basic "parts" into higher-order networks that behave as predicted. Developing strategies for improving the performance and sophistication of our designs is informed by two overarching perspectives: "bottom-up" and "top-down" considerations. Using this framework, we describe a conceptual model for developing novel biological systems that function and interact with existing biological components in a predictable fashion. We discuss this model in the context of three topical areas: biochemical transformations, cellular devices and therapeutics, and approaches that expand the chemistry of life. Ten years after the construction of synthetic biology's first devices, the drive to look beyond what does exist to what can exist is ushering in an era of biology by design.


Assuntos
Biotecnologia/métodos , Biotecnologia/tendências , Engenharia Genética/métodos , Engenharia Genética/tendências , Biologia Sintética/métodos , Biologia Sintética/tendências , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA