Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(32)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34348905

RESUMO

Host antibody responses are pivotal for providing protection against infectious agents. We have pioneered a new class of self-assembling micelles based on pentablock copolymers that enhance antibody responses while providing a low inflammatory environment compared to traditional adjuvants. This type of "just-right" immune response is critical in the rational design of vaccines for older adults. Here, we report on the mechanism of enhancement of antibody responses by pentablock copolymer micelles, which act as scaffolds for antigen presentation to B cells and cross-link B cell receptors, unlike other micelle-forming synthetic block copolymers. We exploited this unique mechanism and developed these scaffolds as a platform technology to produce antibodies in vitro. We show that this novel approach can be used to generate laboratory-scale quantities of therapeutic antibodies against multiple antigens, including those associated with SARS-CoV-2 and Yersinia pestis, further expanding the value of these nanomaterials to rapidly develop countermeasures against infectious diseases.


Assuntos
Formação de Anticorpos , Apresentação de Antígeno/imunologia , Reagentes de Ligações Cruzadas/química , Receptores de Antígenos de Linfócitos B/química , Proteínas Recombinantes de Fusão/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Yersinia pestis/imunologia , Adjuvantes Imunológicos , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polímeros/química , Receptores de Antígenos de Linfócitos B/metabolismo
2.
Acta Biomater ; 100: 326-337, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31610342

RESUMO

Yersinia pestis, the causative agent of pneumonic plague, induces a highly lethal infection if left untreated. Currently, there is no FDA-approved vaccine against this pathogen; however, USAMRIID has developed a recombinant fusion protein, F1-V, that has been shown to induce protection against pneumonic plague. Many F1-V-based vaccine formulations require prime-boost immunization to achieve protective immunity, and there are limited reports of rapid induction of protective immunity (≤ 14 days post-immunization (DPI)). The STimulator of INterferon Genes agonists cyclic dinucleotides (CDNs) have been shown to be promising vaccine adjuvants. Polyanhydride nanoparticle-based vaccines (i.e., nanovaccines) have also shown to enhance immune responses due to their dual functionality as adjuvants and delivery vehicles. In this work, a combination nanovaccine was designed that comprised F1-V-loaded nanoparticles combined with the CDN, dithio-RP,RP-cyclic di-guanosine monophosphate, to induce rapid and long-lived protective immunity against pneumonic plague. All mice immunized with a single dose combination nanovaccine were protected from Y. pestis lethal challenge within 14 DPI and demonstrated enhanced protection over F1-V adjuvanted with CDNs alone at challenge doses ≥7000 CFU Y. pestis CO92. In addition, 75% of mice receiving the single dose of the combination nanovaccine were protected from challenge at 182 DPI, while maintaining high levels of antigen-specific serum IgG. ELISPOT analysis of vaccinated animals at 218 DPI revealed F1-V-specific long-lived plasma cells in bone marrow in mice vaccinated with CDN adjuvanted F1-V or the combination nanovaccine. Microarray analysis of serum from these vaccinated mice revealed the presence of serum antibody that bound to a broad range of F1 and V linear epitopes. These results demonstrate that combining the adjuvanticity of CDNs with a nanovaccine delivery system enables induction of both rapid and long-lived protective immunity against Y. pestis. STATEMENT OF SIGNIFICANCE: • Yersinia pestis, the causative agent of pneumonic plague, induces a highly lethal infection if left untreated. Currently, there is no FDA-approved vaccine against this biodefense pathogen. • We designed a combination nanovaccine comprising of F1-V antigen-loaded polyanhydride nanoparticles and a cyclic dinucleotide adjuvant to induce both rapid and long-lived protective immunity against pneumonic plague. • Animals immunized with the combination nanovaccine maintained high levels of antigen-specific serum IgG and long-lived plasma cells in bone marrow and the serum antibody showed a high affinity for a broad range of F1 and V linear epitopes. • The combination nanovaccine is a promising next-generation vaccine platform against weaponized Y. pestis based on its ability to induce both rapid and long-lived protective immunity.


Assuntos
Nanopartículas/uso terapêutico , Peste/imunologia , Peste/prevenção & controle , Pneumonia/imunologia , Pneumonia/prevenção & controle , Vacinas/imunologia , Animais , Formação de Anticorpos/imunologia , Relação Dose-Resposta Imunológica , Epitopos/imunologia , Feminino , Imunoglobulina G/imunologia , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Peste/complicações , Plasmócitos/metabolismo , Pneumonia/complicações , Yersinia pestis/imunologia
3.
Vaccine ; 37(20): 2721-2730, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30987850

RESUMO

BACKGROUND: One of the most concerning public health issues, related to vaccination and disease prevention, is the inability to induce durable immune responses following a single-dose immunization. In this regard, the nature of the inflammatory environment induced by vaccine adjuvants can negatively impact the resulting immune response. To address these concerns, new strategies to vaccine design are needed in order to improve the outcomes of immune responses, particularly in immunologically disadvantaged populations. METHODS: Comparisons of the scope of innate immune activation induced by TLR agonists versus cyclic dinucleotides (CDNs) was performed. Their effects on the activation characteristics (e.g., metabolism, cytokine secretion) of bone marrow derived dendritic cells (BMDCs) were studied. In addition, the differential effects on in vivo induction of antibody responses were measured. RESULTS: As compared to TLR ligands, the stimulation of BMDCs with CDNs induced distinctly different metabolic outcomes. Marked differences were observed in the production of nitric oxide (NO) and the cytokine BAFF. These distinct differences were correlated with improved (i.e., more rapid and persistent) vaccine antibody responses in both aged and young mice. CONCLUSIONS: Our results illustrate that the innate immune pathway targeted by adjuvants can critically impact the outcome of the immune response post-vaccination. Specifically, CDN stimulation of APCs induced an activation phenotype that was characterized by decreased innate effector molecule production (e.g., NO) and increased BAFF. This was attributed to the induction of an innate inflammatory environment that enabled the host to make the most of the existing B lymphocyte potential. The use of adjuvants that differentially engage mechanisms of innate immune activation would be particularly advantageous for the generation of robust, single dose vaccines. The results of this study demonstrated that CDNs induced differential innate activation and enhanced vaccine induced antibody responses in both young and aged mice.


Assuntos
Formação de Anticorpos , Imunidade Inata , Proteínas de Membrana/metabolismo , Óxido Nítrico/metabolismo , Fenótipo , Transdução de Sinais , Animais , Fator Ativador de Células B/metabolismo , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Camundongos , Mitocôndrias/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Toll-Like/agonistas
4.
ACS Biomater Sci Eng ; 5(3): 1332-1342, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405651

RESUMO

As the focus has shifted from traditional killed or live, attenuated vaccines toward subunit vaccines, improvements in vaccine safety have been confronted with low immunogenicity of protein antigens. This issue has been addressed by synthesizing and designing a wide variety of antigen carriers and adjuvants, such as Toll-like receptor agonists (e.g., MPLA, CpG). Studies have focused on optimizing adjuvants for improved cellular trafficking, cytosolic availability, and improved antigen presentation. In this work, we describe the design of novel amphiphilic pentablock copolymer (PBC) adjuvants that exhibit high biocompatibility and reversible pH- and temperature-sensitive micelle formation. We demonstrate improved humoral immunity in mice in response to single-dose immunization with PBC micelle adjuvants compared with soluble antigen alone. With the motive of exploring the mechanism of action of these PBC micelles, we studied intracellular trafficking of these PBC micelles with a model antigen and demonstrated that the PBC micelles associate with the antigen and enhance its cytosolic delivery to antigen-presenting cells. We posit that these PBC micelles operate via immune-enhancing mechanisms that are different from that of traditional Toll-like receptor activating adjuvants. The metabolic profile of antigen-presenting cells stimulated with traditional adjuvants and the PBC micelles also suggests distinct mechanisms of action. A key finding from this study is the low production of nitric oxide and reactive oxygen species by antigen-presenting cells when stimulated by PBC micelle adjuvants in sharp contrast to TLR adjuvants. Together, these studies provide a basis for rationally developing novel vaccine adjuvants that are safe, that induce low inflammation, and that can efficiently deliver antigen to the cytosol.

5.
Dig Dis Sci ; 60(11): 3293-303, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26026602

RESUMO

BACKGROUND: The pathogenesis of inflammatory bowel disease (IBD) is complex and multifaceted including genetic predisposition, environmental components, microbial dysbiosis, and inappropriate immune activation to microbial components. Pathogenic bacterial provocateurs like adherent and invasive E. coli have been reported to increase susceptibility to Crohn's disease. Serum-derived bovine immunoglobulin/protein isolate (SBI) is comprised primarily of immunoglobulins (Igs) that bind to conserved microbial components and neutralize exotoxins. AIM: To demonstrate that oral administration of SBI may modulate mucosal inflammation following colonization with E. coli, LF82, and exposure to dextran sodium sulfate (DSS). METHODS: Defined microbiota mice harboring the altered Schaedler flora (ASF) were administered SBI or hydrolyzed collagen twice daily starting 7 days prior to challenge with E. coli LF82 and continuing for the remainder of the experiment. Mice were treated with DSS for 7 days and then evaluated for evidence of local and peripheral inflammation. RESULTS: Igs within SBI bound multiple antigens from all eight members of the ASF and E. coli LF82 by western blot analysis. Multiple parameters of LF82/DSS-induced colitis were reduced following administration of SBI, including histological lesion scores, secretion of cytokines and chemokines from cecal biopsies, intestinal fatty acid binding protein (I-FABP) and serum amyloid A from plasma. CONCLUSIONS: Oral administration of SBI attenuated clinical signs of LF82/DSS-induced colitis in mice. The data are consistent with the hypothesis that SBI immunoglobulin binding of bacterial antigens in the intestinal lumen may inhibit the inflammatory cascades that contribute to IBD, thus attenuating DSS-induced colitis.


Assuntos
Bactérias/imunologia , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Imunoglobulinas/farmacologia , Intestinos/microbiologia , Microbiota , Administração Oral , Animais , Antígenos de Bactérias/imunologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Quimiocinas/metabolismo , Colite/induzido quimicamente , Colite/imunologia , Colite/microbiologia , Colite/patologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Escherichia coli , Feminino , Vida Livre de Germes , Imunoglobulinas/administração & dosagem , Masculino , Camundongos Endogâmicos C3H
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA