Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(12): e4174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776233

RESUMO

Habitat fragmentation remains a major focus of research by ecologists decades after being put forward as a threat to the integrity of ecosystems. While studies have documented myriad biotic changes in fragmented landscapes, including the local extinction of species from fragments, the demographic mechanisms underlying these extinctions are rarely known. However, many of them-especially in lowland tropical forests-are thought to be driven by one of two mechanisms: (1) reduced recruitment in fragments resulting from changes in the diversity or abundance of pollinators and seed dispersers or (2) increased rates of individual mortality in fragments due to dramatically altered abiotic conditions, especially near fragment edges. Unfortunately, there have been few tests of these potential mechanisms due to the paucity of long-term and comprehensive demographic data collected in both forest fragments and continuous forest sites. Here we report 11 years (1998-2009) of demographic data from populations of the Amazonian understory herb Heliconia acuminata (LC Rich.) found at Brazil's Biological Dynamics of Forest Fragments Project (BDFFP). The data set comprises >66,000 plant × year records of 8586 plants, including 3464 seedlings established after the first census. Seven populations were in experimentally isolated fragments (one in each of four 1-ha fragments and one in each of three 10-ha fragments), with the remaining six populations in continuous forest. Each population was in a 50 × 100 m permanent plot, with the distance between plots ranging from 500 m to 60 km. The plants in each plot were censused annually, at which time we recorded, identified, marked, and measured new seedlings, identified any previously marked plants that died, and recorded the size of surviving individuals. Each plot was also surveyed four to five times during the flowering season to identify reproductive plants and record the number of inflorescences each produced. These data have been used to investigate topics ranging from the way fragmentation-related reductions in germination influence population dynamics to statistical methods for analyzing reproductive rates. This breadth of prior use reflects the value of these data to future researchers. In addition to analyses of plant responses to habitat fragmentation, these data can be used to address fundamental questions in plant demography and the evolutionary ecology of tropical plants and to develop and test demographic models and tools. Though we welcome opportunities to collaborate with interested users, there are no restrictions on the use of this data set. However, we do request that those using the data for teaching or research purposes inform us of how they are doing so and cite this paper and the data archive when appropriate. Any publication using the data must also include a BDFFP Technical Series Number in the Acknowledgments. Authors can request this series number upon the acceptance of their article by contacting the BDFFP's Scientific Coordinator or E. M. Bruna.


Assuntos
Ecossistema , Heliconiaceae , Humanos , Heliconiaceae/fisiologia , Árvores , Florestas , Dinâmica Populacional , Plantas , Plântula , Clima Tropical
2.
Ecology ; 103(2): e03595, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807455

RESUMO

Flowering plant species and their nectar-feeding vertebrates exemplify some of the most remarkable biotic interactions in the Neotropics. In the Brazilian Atlantic Forest, several species of birds (especially hummingbirds), bats, and non-flying mammals, as well as one lizard feed on nectar, often act as pollinators and contribute to seed output of flowering plants. We present a dataset containing information on flowering plants visited by nectar-feeding vertebrates and sampled at 166 localities in the Brazilian Atlantic Forest. This dataset provides information on 1902 unique interactions among 515 species of flowering plants and 129 species of potential vertebrate pollinators and the patterns of species diversity across latitudes. All plant-vertebrate interactions compiled were recorded through direct observations of visits, and no inferences of pollinators based on floral syndromes were included. We also provide information on the most common plant traits used to understand the interactions between flowers and nectar-feeding vertebrates: plant growth form, corolla length, rate of nectar production per hour in bagged flowers, nectar concentration, flower color and shape, time of anthesis, presence or absence of perceptible fragrance by human, and flowering phenology as well as the plant's threat status by International Union for Conservation of Nature (IUCN) classification. For the vertebrates, status of threat by IUCN classification, body mass, bill or rostrum size are provided. Information on the frequency of visits and pollen deposition on the vertebrate's body is provided from the original source when available. The highest number of unique interactions is recorded for birds (1771) followed by bats (110). For plants, Bromeliaceae contains the highest number of unique interactions (606), followed by Fabaceae (242) and Gesneriaceae (104). It is evident that there was geographical bias of the studies throughout the southeast of the Brazilian Atlantic Forest and that most effort was directed to flower-hummingbird interactions. However, it reflects a worldwide tendency of more plants interacting with birds compared with other vertebrate species. The lack of similar protocols among studies to collect basic data limits the comparisons among areas and generalizations. Nevertheless, this dataset represents a notable effort to organize and highlight the importance of vertebrate pollinators in this hotspot of biodiversity on Earth and represents the data currently available. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or scientific events.


Assuntos
Néctar de Plantas , Polinização , Animais , Aves , Flores , Florestas , Humanos , Mamíferos
3.
Ecology ; 100(7): e02706, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916779

RESUMO

Reproduction by individuals is typically recorded as count data (e.g., number of fledglings from a nest or inflorescences on a plant) and commonly modeled using Poisson or negative binomial distributions, which assume that variance is greater than or equal to the mean. However, distributions of reproductive effort are often underdispersed (i.e., variance < mean). When used in hypothesis tests, models that ignore underdispersion will be overly conservative and may fail to detect significant patterns. Here we show that generalized Poisson (GP) and Conway-Maxwell-Poisson (CMP) distributions are better choices for modeling reproductive effort because they can handle both overdispersion and underdispersion; we provide examples of how ecologists can use GP and CMP distributions in generalized linear models (GLMs) and generalized linear mixed models (GLMMs) to quantify patterns in reproduction. Using a new R package, glmmTMB, we construct GLMMs to investigate how rainfall and population density influence the number of fledglings in the warbler Oreothlypis celata and how flowering rate of Heliconia acuminata differs between fragmented and continuous forest. We also demonstrate how to deal with zero-inflation, which occurs when there are more zeros than expected in the distribution, e.g., due to complete reproductive failure by some individuals.


Assuntos
Modelos Estatísticos , Reprodução , Animais , Modelos Lineares , Estudos Longitudinais , Distribuição de Poisson
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA