Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 21(11): 1632-1644, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36121385

RESUMO

CCAAT/enhancer binding protein ß (C/EBPß) is a basic leucine zipper (bZIP) family transcription factor, which is upregulated or overactivated in many cancers, resulting in a gene expression profile that drives oncogenesis. C/EBPß dimerization regulates binding to DNA at the canonical TTGCGCAA motif and subsequent transcriptional activity, suggesting that disruption of dimerization represents a powerful approach to inhibit this previously "undruggable" oncogenic target. Here we describe the mechanism of action and antitumor activity of ST101, a novel and selective peptide antagonist of C/EBPß that is currently in clinical evaluation in patients with advanced solid tumors. ST101 binds the leucine zipper domain of C/EBPß, preventing its dimerization and enhancing ubiquitin-proteasome dependent C/EBPß degradation. ST101 exposure attenuates transcription of C/EBPß target genes, including a significant decrease in expression of survival, transcription factors, and cell-cycle-related proteins. The result of ST101 exposure is potent, tumor-specific in vitro cytotoxic activity in cancer cell lines including glioblastoma, breast, melanoma, prostate, and lung cancer, whereas normal human immune and epithelial cells are not impacted. Further, in mouse xenograft models ST101 exposure results in potent tumor growth inhibition or regression, both as a single agent and in combination studies. These data provide the First Disclosure of ST101, and support continued clinical development of ST101 as a novel strategy for targeting C/EBPß-dependent cancers.


Assuntos
Antineoplásicos , Proteína beta Intensificadora de Ligação a CCAAT , Animais , Humanos , Camundongos , Proteína beta Intensificadora de Ligação a CCAAT/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Ligação Proteica , Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico
2.
Neoplasia ; 22(7): 274-282, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32464274

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) aberrant expression and activity have been linked to the pathogenesis of a variety of cancers including rhabdomyosarcomas (RMS). We found that treatment of alveolar rhabdomyosarcoma (aRMS) cells with Guadecitabine (SGI-110), a next-generation DNA methyltransferase inhibitor (DNMTi), resulted in a significant reduction of FGFR4 protein levels, 5 days post treatment. Chromatin immunoprecipitation-sequencing (ChIP-seq) in aRMS cells revealed attenuation of the H3K4 mono-methylation across the FGFR4 super enhancer without changes in tri-methylation of either H3K4 or H3K27. These changes were associated with a significant reduction in FGFR4 transcript levels in treated cells. These decreases in H3K4me1 in the FGFR4 super enhancer were also associated with a 240-fold increase in KDM5B (JARID1B) mRNA levels. Immunoblot and immunofluorescent studies also revealed a significant increase in the KDM5B protein levels after treatment in these cells. KDM5B is the only member of KDM5 (JARID1) family of histone lysine demethylases that catalyzes demethylation of H3K4me1. These data together suggest a pleiotropic effect of DNMTi therapy in aRMS cells, converging to significantly lower FGFR4 protein levels in these cells.


Assuntos
Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Rabdomiossarcoma Alveolar/tratamento farmacológico , Azacitidina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sequenciamento de Cromatina por Imunoprecipitação , Regulação para Baixo/efeitos dos fármacos , Elementos Facilitadores Genéticos , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Proteínas Repressoras/metabolismo , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia
3.
J Nat Prod ; 82(8): 2094-2105, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31343174

RESUMO

A series of novel madecassic acid (1) derivatives was synthesized, and their cytotoxicity was evaluated against the NCI-60 panel of cancer cell lines. Several analogues exhibited broad-spectrum cytotoxic activities over all nine tumor types represented in the panel, with more potent antiproliferative activities observed against selected cancer cell lines, including multidrug-resistant phenotypes. Among them, compound 29 showed GI50 (50% growth inhibition) values ranging from 0.3 to 0.9 µM against 26 different tumor cell lines and selectivity for one colon (COLO 205) and two melanoma (SK-MEL-5 and UACC-257) cell lines at the TGI (total growth inhibition) level. The mode of action of 29 was predicted by CellMiner bioinformatic analysis and confirmed by biochemical and cell-based experiments to involve inhibition of the DNA replication process, particularly the initiation of replication, and disruption of mitochondrial membrane potential. The present findings suggest this novel madecassic acid derivative may have potential as an anticancer therapeutic lead for both solid and hematological tumors.


Assuntos
Antineoplásicos/farmacologia , Triterpenos/farmacologia , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Estrutura Molecular , Análise Espectral/métodos , Relação Estrutura-Atividade , Triterpenos/química
4.
J Cell Biochem ; 117(12): 2886-2898, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27192630

RESUMO

Genome-wide screening of the yeast Saccharomyces cerevisiae knockout collection was used to characterize chemical-genetic interactions of cycloheximide (CHX). The results showed that while the act1Δ mutant was the only deletion mutant in the heterozygous essential gene deletion collection that showed hypersensitivity to sub-inhibitory concentrations of CHX, deletion of nonessential genes that work in concert with either cytoplasmic or nuclear actin in the homozygous deletion collection also highly sensitized yeast to CHX. Fluorescence microscopy analysis revealed that CHX disrupts filamentous actin structures and fluid phase endocytosis in the yeast cell. It also showed that CHX disrupts transforming growth factor-ß1 (TGF-ß1)-induced actin reorganization and polygonal architecture of microfilaments in mammalian cells. This inhibitory effect is mediated, at least in part, through the actin dynamics signaling pathway via suppression of activation of the small GTPase RhoA. J. Cell. Biochem. 117: 2886-2898, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Cicloeximida/farmacologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Células Cultivadas , Endocitose/efeitos dos fármacos , Humanos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
5.
J Biol Chem ; 291(19): 10058-66, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26961871

RESUMO

High-throughput screening of extracts from plants, marine, and micro-organisms led to the identification of the extract from the plant Phyllanthus engleri as the most potent inhibitor of EWS-FLI1 induced luciferase reporter expression. Testing of compounds isolated from this extract in turn led to the identification of Englerin A (EA) as the active constituent of the extract. EA induced both necrosis and apoptosis in Ewing cells subsequent to a G2M accumulation of cells in the cell cycle. It also impacted clonogenic survival and anchorage-independent proliferation while also decreasing the proportion of chemotherapy-resistant cells identified by high ALDH activity. EA also caused a sustained increase in cytosolic calcium levels. EA appears to exert its effect on Ewing cells through a decrease in phosphorylation of EWS-FLI1 and its ability to bind DNA. This effect is mediated, at least in part, through a decrease in the levels of the calcium-dependent protein kinase PKC-ßI after a transient up-regulation.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , DNA de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/metabolismo , Sesquiterpenos de Guaiano/farmacologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Apoptose/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Humanos , Proteínas de Fusão Oncogênica/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ligação Proteica/efeitos dos fármacos , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
6.
PLoS One ; 8(10): e76028, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204588

RESUMO

Eugenol is an aromatic component of clove oil that has therapeutic potential as an antifungal drug, although its mode of action and precise cellular target(s) remain ambiguous. To address this knowledge gap, a chemical-genetic profile analysis of eugenol was done using ∼4700 haploid Saccharomyces cerevisiae gene deletion mutants to reveal 21 deletion mutants with the greatest degree of susceptibility. Cellular roles of deleted genes in the most susceptible mutants indicate that the main targets for eugenol include pathways involved in biosynthesis and transport of aromatic and branched-chain amino acids. Follow-up analyses showed inhibitory effects of eugenol on amino acid permeases in the yeast cytoplasmic membrane. Furthermore, phenotypic suppression analysis revealed that eugenol interferes with two permeases, Tat1p and Gap1p, which are both involved in dual transport of aromatic and branched-chain amino acids through the yeast cytoplasmic membrane. Perturbation of cytoplasmic permeases represents a novel antifungal target and may explain previous observations that exposure to eugenol results in leakage of cell contents. Eugenol exposure may also contribute to amino acid starvation and thus holds promise as an anticancer therapeutic drug. Finally, this study provides further evidence of the usefulness of the yeast Gene Deletion Array approach in uncovering the mode of action of natural health products.


Assuntos
Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Aminoácidos Aromáticos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Antifúngicos/farmacologia , Membrana Celular/metabolismo , Eugenol/farmacologia , Leveduras/efeitos dos fármacos , Leveduras/metabolismo , Deleção de Genes , Redes e Vias Metabólicas/efeitos dos fármacos , Fenótipo , Biossíntese de Proteínas/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Leveduras/genética
7.
Med Mycol ; 51(8): 826-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23718894

RESUMO

The antifungal mode of action of thymol was investigated by a chemical-genetic profile analysis. Growth of each of ~4700 haploid Saccharomyces cerevisiae gene deletion mutants was monitored on medium with a subinhibitory concentration (50 µg/ml) of thymol and compared to growth on non-thymol control medium. This analysis revealed that, of the 76 deletion mutants with the greatest degree of susceptibility to thymol, 29% had deletions in genes involved in telomere length maintenance. A telomere restriction fragment (TRF) length assay showed that yeast exposed to a subinhibitory concentration of thymol for 15 days had telomere size reductions of 13-20% compared to non-thymol controls. By accelerating telomere shortening, thymol may increase the rate of cell senescence and apoptosis. Furthermore, real-time RT-PCR analysis revealed approximately two-fold reductions in EST2 mRNA but no change in TLC1 RNA in thymol-treated S. cerevisiae relative to untreated cells. EST2 encodes the essential reverse transcriptase subunit of telomerase that uses TLC1 RNA as a template during addition of TG(1-3) repeats to maintain telomere ends. This study provides compelling evidence that a primary mode of thymol antifungal activity is through inhibition of transcription of EST2 and thus telomerase activity.


Assuntos
Antifúngicos/farmacologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Timol/farmacologia , Meios de Cultura/química , Deleção de Genes , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA