Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386149

RESUMO

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Assuntos
Reprodução , Árvores , Fertilidade , Sementes , Saciação
2.
Nat Commun ; 13(1): 2381, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501313

RESUMO

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Assuntos
Florestas , Sementes , Fertilidade , Reprodução , Sementes/fisiologia , Árvores
3.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460530

RESUMO

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Assuntos
Florestas , Árvores , Biodiversidade , Clima , Fertilidade , Sementes
4.
Annu Rev Plant Biol ; 73: 673-702, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35231182

RESUMO

Recent observations of elevated tree mortality following climate extremes, like heat and drought, raise concerns about climate change risks to global forest health. We currently lack both sufficient data and understanding to identify whether these observations represent a global trend toward increasing tree mortality. Here, we document events of sudden and unexpected elevated tree mortality following heat and drought events in ecosystems that previously were considered tolerant or not at risk of exposure. These events underscore the fact that climate change may affect forests with unexpected force in the future. We use the events as examples to highlight current difficulties and challenges for realistically predicting such tree mortality events and the uncertainties about future forest condition. Advances in remote sensing technology and greater availably of high-resolution data, from both field assessments and satellites, are needed to improve both understanding and prediction of forest responses to future climate change.


Assuntos
Mudança Climática , Árvores , Secas , Ecossistema , Florestas , Árvores/fisiologia
5.
Ecol Appl ; 32(2): e2514, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35094444

RESUMO

Severe droughts are predicted to become more frequent in the future, and the consequences of such droughts on forests can be dramatic, resulting in massive tree mortality, rapid change in forest structure and composition, and substantially increased risk of catastrophic fire. Forest managers have tools at their disposal to try to mitigate these effects but are often faced with limited resources, forcing them to make choices about which parts of the landscape to target for treatment. Such planning can greatly benefit from landscape vulnerability assessments, but many existing vulnerability analyses are unvalidated and not grounded in robust empirical datasets. We combined robust sets of ground-based plot and remote sensing data, collected during the 2012-2016 California drought, to develop rigorously validated tools for assessing forest vulnerability to drought-related canopy tree mortality for the mixed conifer forests of the Sequoia and Kings Canyon national parks and potentially for mixed conifer forests in the Sierra Nevada as a whole. Validation was carried out using a large external dataset. The best models included normalized difference vegetation index (NDVI), elevation, and species identity. Models indicated that tree survival probability decreased with greenness (as measured by NDVI) and elevation, particularly if trees were growing slowly. Overall, models showed good calibration and validation, especially for Abies concolor, which comprise a large majority of the trees in many mixed conifer forests in the Sierra Nevada. Our models tended to overestimate mortality risk for Calocedrus decurrens and underestimate risk for pine species, in the latter case probably due to pine bark beetle outbreak dynamics. Validation results indicated dangers of overfitting, as well as showing that the inclusion of trees already under attack by bark beetles at the time of sampling can give false confidence in model strength, while also biasing predictions. These vulnerability tools should be useful to forest managers trying to assess which parts of their landscape were vulnerable during the 2012-2016 drought, and, with additional validation, may prove useful for ongoing assessments and predictions of future forest vulnerability.


Assuntos
Incêndios , Pinus , Traqueófitas , Animais , Secas , Florestas
6.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34983867

RESUMO

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.


Assuntos
Mudança Climática , Árvores/fisiologia , Ecossistema , Fertilidade/fisiologia , Geografia , América do Norte , Incerteza
7.
Ecol Appl ; 32(2): e2507, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34870871

RESUMO

In an emerging era of megadisturbance, bolstering forest resilience to wildfire, insects, and drought has become a central objective in many western forests. Climate has received considerable attention as a driver of these disturbances, but few studies have examined the complexities of climate-vegetation-disturbance interactions. Current strategies for creating resilient forests often rely on retrospective approaches, seeking to impart resilience by restoring historical conditions to contemporary landscapes, but historical conditions are becoming increasingly unattainable amidst modern bioclimatic conditions. What becomes an appropriate benchmark for resilience when we have novel forests, rapidly changing climate, and unprecedented disturbance regimes? We combined two longitudinal datasets-each representing some of the most comprehensive spatially explicit, annual tree mortality data in existence-in a post-hoc factorial design to examine the nonlinear relationships between fire, climate, forest spatial structure, and bark beetles. We found that while prefire drought elevated mortality risk, advantageous local neighborhoods could offset these effects. Surprisingly, mortality risk (Pm ) was higher in crowded local neighborhoods that burned in wet years (Pm  = 42%) compared with sparse neighborhoods that burned during drought (Pm  = 30%). Risk of beetle attack was also increased by drought, but lower conspecific crowding impeded the otherwise positive interaction between fire and beetle attack. Antecedent fire increased drought-related mortality over short timespans (<7 years) but reduced mortality over longer intervals. These results clarify interacting disturbance dynamics and provide a mechanistic underpinning for forest restoration strategies. Importantly, they demonstrate the potential for managed fire and silvicultural strategies to offset climate effects and bolster resilience to fire, beetles, and drought.


Assuntos
Incêndios , Árvores , Mudança Climática , Florestas , Distanciamento Físico , Estudos Retrospectivos
9.
Nat Commun ; 12(1): 5102, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429405

RESUMO

Range shifts of infectious plant disease are expected under climate change. As plant diseases move, emergent abiotic-biotic interactions are predicted to modify their distributions, leading to unexpected changes in disease risk. Evidence of these complex range shifts due to climate change, however, remains largely speculative. Here, we combine a long-term study of the infectious tree disease, white pine blister rust, with a six-year field assessment of drought-disease interactions in the southern Sierra Nevada. We find that climate change between 1996 and 2016 moved the climate optimum of the disease into higher elevations. The nonlinear climate change-disease relationship contributed to an estimated 5.5 (4.4-6.6) percentage points (p.p.) decline in disease prevalence in arid regions and an estimated 6.8 (5.8-7.9) p.p. increase in colder regions. Though climate change likely expanded the suitable area for blister rust by 777.9 (1.0-1392.9) km2 into previously inhospitable regions, the combination of host-pathogen and drought-disease interactions contributed to a substantial decrease (32.79%) in mean disease prevalence between surveys. Specifically, declining alternate host abundance suppressed infection probabilities at high elevations, even as climatic conditions became more suitable. Further, drought-disease interactions varied in strength and direction across an aridity gradient-likely decreasing infection risk at low elevations while simultaneously increasing infection risk at high elevations. These results highlight the critical role of aridity in modifying host-pathogen-drought interactions. Variation in aridity across topographic gradients can strongly mediate plant disease range shifts in response to climate change.


Assuntos
Basidiomycota , Mudança Climática , Doenças das Plantas , Ribes , Clima , Secas , Florestas , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Plantas , Prevalência , Água
10.
Ecol Appl ; 31(7): e02395, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34164888

RESUMO

Between 2012 and 2016, California suffered one of the most severe droughts on record. During this period Sequoiadendron giganteum (giant sequoias) in the Sequoia and Kings Canyon National Parks (SEKI), California, USA experienced canopy water content (CWC) loss, unprecedented foliage senescence, and, in a few cases, death. We present an assessment of the vulnerability of giant sequoia populations to droughts that is currently lacking and needed for management. We used a temporal trend of remotely sensed CWC obtained between 2015 and 2017, and recently georeferenced giant sequoia crowns to quantify the vulnerability of 7,408 individuals in 10 groves in the northern portion of SEKI. CWC is sensitive to changes in liquid water in tree canopies; therefore, it is a useful metric for quantifying the response of sequoia trees to drought. Temporal trends indicated that 9% of giant sequoias had a significant decline or consistently low CWC, suggesting these trees were likely operating at low photosynthetic capacity and potentially at high risk to drought stress. We also found that 20% of the giant sequoias had an increase or consistently high level of CWC, indicating these trees were at low risk to drought stress. These vulnerability categories were used in a random forest model with a combination of topographic, fire-related, and climate variables to generate high-resolution vulnerability risk maps. These maps show that higher risk is associated with lower elevation and higher climate water deficit. We also found that sequoias at higher elevations but located near meadows had higher vulnerability risk. These results and the vulnerability maps can identify vulnerable sequoias that may be difficult to save or locations of refugia to be protected, and thus may aid forest managers in preparation for future droughts.


Assuntos
Secas , Sequoiadendron , California , Clima , Incêndios , Tecnologia de Sensoriamento Remoto
12.
Trends Ecol Evol ; 36(6): 520-532, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33674131

RESUMO

Widespread tree mortality following droughts has emerged as an environmentally and economically devastating 'ecological surprise'. It is well established that tree physiology is important in understanding drought-driven mortality; however, the accuracy of predictions based on physiology alone has been limited. We propose that complicating factors at two levels stymie predictions of drought-driven mortality: (i) organismal-level physiological and site factors that obscure understanding of drought exposure and vulnerability and (ii) community-level ecological interactions, particularly with biotic agents whose effects on tree mortality may reverse expectations based on stress physiology. We conclude with a path forward that emphasizes the need for an integrative approach to stress physiology and biotic agent dynamics when assessing forest risk to drought-driven morality in a changing climate.


Assuntos
Secas , Árvores , Clima , Mudança Climática , Florestas
13.
Nat Commun ; 12(1): 1242, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623042

RESUMO

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


Assuntos
Mudança Climática , Árvores/fisiologia , Fertilidade/fisiologia , Geografia , Modelos Teóricos , América do Norte , Estações do Ano
14.
Ecol Appl ; 31(3): e02280, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33331069

RESUMO

Large, severe fires are becoming more frequent in many forest types across the western United States and have resulted in tree mortality across tens of thousands of hectares. Conifer regeneration in these areas is limited because seeds must travel long distances to reach the interior of large burned patches and establishment is jeopardized by increasingly hot and dry conditions. To better inform postfire management in low elevation forests of California, USA, we collected 5-yr postfire recovery data from 1,234 study plots in 19 wildfires that burned from 2004-2012 and 18 yrs of seed production data from 216 seed fall traps (1999-2017). We used these data in conjunction with spatially extensive climate, topography, forest composition, and burn severity surfaces to construct taxon-specific, spatially explicit models of conifer regeneration that incorporate climate conditions and seed availability during postfire recovery windows. We found that after accounting for other predictors both postfire and historical precipitation were strong predictors of regeneration, suggesting that both direct effects of postfire moisture conditions and biological inertia from historical climate may play a role in regeneration. Alternatively, postfire regeneration may simply be driven by postfire climate and apparent relationships with historical climate could be spurious. The estimated sensitivity of regeneration to postfire seed availability was strongest in firs and all conifers combined and weaker in pines. Seed production exhibited high temporal variability with seed production varying by over two orders of magnitude among years. Our models indicate that during droughts postfire conifer regeneration declines most substantially in low-to-moderate elevation forests. These findings enhance our mechanistic understanding of forecasted and historically documented shifts in the distribution of trees.


Assuntos
Incêndios , Traqueófitas , Incêndios Florestais , Clima , Ecossistema , Florestas , Sementes , Árvores
15.
New Phytol ; 229(2): 831-844, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918833

RESUMO

Conifer mortality rates are increasing in western North America, but the physiological mechanisms underlying this trend are not well understood. We examined tree-ring-based radial growth along with stable carbon (C) and oxygen (O) isotope composition (δ13 C and δ18 O, respectively) of dying and surviving conifers at eight old-growth forest sites across a strong moisture gradient in the western USA to retrospectively investigate mortality predispositions. Compared with surviving trees, lower growth of dying trees was detected at least one decade before mortality at seven of the eight sites. Intrinsic water-use efficiency increased over time in both dying and surviving trees, with a weaker increase in dying trees at five of the eight sites. C starvation was a strong correlate of conifer mortality based on a conceptual model incorporating growth, δ13 C, and δ18 O. However, this approach does not capture processes that occur in the final months of survival. Ultimately, C starvation may lead to increased mortality vulnerability, but hydraulic failure or biotic attack may dominate the process during the end stages of mortality in these conifers.


Assuntos
Traqueófitas , Isótopos de Carbono/análise , Secas , América do Norte , Estudos Retrospectivos , Árvores , Água
17.
Sci Data ; 7(1): 194, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572035

RESUMO

Wildland fires have a multitude of ecological effects in forests, woodlands, and savannas across the globe. A major focus of past research has been on tree mortality from fire, as trees provide a vast range of biological services. We assembled a database of individual-tree records from prescribed fires and wildfires in the United States. The Fire and Tree Mortality (FTM) database includes records from 164,293 individual trees with records of fire injury (crown scorch, bole char, etc.), tree diameter, and either mortality or top-kill up to ten years post-fire. Data span 142 species and 62 genera, from 409 fires occurring from 1981-2016. Additional variables such as insect attack are included when available. The FTM database can be used to evaluate individual fire-caused mortality models for pre-fire planning and post-fire decision support, to develop improved models, and to explore general patterns of individual fire-induced tree death. The database can also be used to identify knowledge gaps that could be addressed in future research.


Assuntos
Incêndios , Agricultura Florestal , Florestas , Árvores , Bases de Dados como Assunto , Estados Unidos
18.
Ecol Appl ; 28(7): 1730-1739, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30151923

RESUMO

Tree mortality is an important outcome of many forest fires. Extensive tree injuries from fire may lead directly to mortality, but environmental and biological stressors may also contribute to tree death. However, there is little evidence showing how the combined effects of two common stressors, drought and competition, influence post-fire mortality. Geographically broad observations of three common western coniferous trees subjected to prescribed fire showed the likelihood of post-fire mortality was related to intermediate-term (10 yr) pre-fire average radial growth, an important component of tree vigor. Path analysis showed that indices of competition and drought stress prior to fire can be described in terms of joint effects on growth, indirectly affecting post-fire mortality. Our results suggest that the conditions that govern the relationship between growth and mortality in unburned stands may also apply to post-fire environments. Thus, biotic and abiotic changes that affect growth negatively (e.g., drought stress) or positively (e.g., growth releases following thinning treatments) prior to fire may influence expressed fire severity, independent of fire intensity (e.g., heat flux, residence time). These relationships suggest that tree mortality may increase under stressful climatic or stand conditions even if fire behavior remains constant.


Assuntos
Secas , Incêndios , Parques Recreativos , Pinaceae/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Agricultura Florestal , Longevidade , Noroeste dos Estados Unidos , Sudoeste dos Estados Unidos , Especificidade da Espécie
19.
Front Plant Sci ; 9: 1964, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713543

RESUMO

Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.

20.
Ecol Appl ; 27(8): 2443-2457, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28871610

RESUMO

Severe drought has the potential to cause selective mortality within a forest, thereby inducing shifts in forest species composition. The southern Sierra Nevada foothills and mountains of California have experienced extensive forest dieback due to drought stress and insect outbreak. We used high-fidelity imaging spectroscopy (HiFIS) and light detection and ranging (LiDAR) from the Carnegie Airborne Observatory (CAO) to estimate the effect of forest dieback on species composition in response to drought stress in Sequoia National Park. Our aims were (1) to quantify site-specific conditions that mediate tree mortality along an elevation gradient in the southern Sierra Nevada Mountains, (2) to assess where mortality events have a greater probability of occurring, and (3) to estimate which tree species have a greater likelihood of mortality along the elevation gradient. A series of statistical models were generated to classify species composition and identify tree mortality, and the influences of different environmental factors were spatially quantified and analyzed to assess where mortality events have a greater likelihood of occurring. A higher probability of mortality was observed in the lower portion of the elevation gradient, on southwest- and west-facing slopes, in areas with shallow soils, on shallower slopes, and at greater distances from water. All of these factors are related to site water balance throughout the landscape. Our results also suggest that mortality is species-specific along the elevation gradient, mainly affecting Pinus ponderosa and Pinus lambertiana at lower elevations. Selective mortality within the forest may drive long-term shifts in community composition along the elevation gradient.


Assuntos
Biodiversidade , Secas , Florestas , Árvores/fisiologia , Altitude , California , Longevidade , Pinus/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA