Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 95, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694043

RESUMO

Previous studies have conducted time course characterization of murine colitis models through transcriptional profiling of differential expression. We characterize the transcriptional landscape of acute and chronic models of dextran sodium sulfate (DSS) and adoptive transfer (AT) colitis to derive temporal gene expression and splicing signatures in blood and colonic tissue in order to capture dynamics of colitis remission and relapse. We identify sub networks of patient-derived causal networks that are enriched in these temporal signatures to distinguish acute and chronic disease components within the broader molecular landscape of IBD. The interaction between the DSS phenotype and chronological time-point naturally defines parsimonious temporal gene expression and splicing signatures associated with acute and chronic phases disease (as opposed to ordinary time-specific differential expression/splicing). We show these expression and splicing signatures are largely orthogonal, i.e. affect different genetic bodies, and that using machine learning, signatures are predictive of histopathological measures from both blood and intestinal data in murine colitis models as well as an independent cohort of IBD patients. Through access to longitudinal multi-scale profiling from disease tissue in IBD patient cohorts, we can apply this machine learning pipeline to generation of direct patient temporal multimodal regulatory signatures for prediction of histopathological outcomes.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Doenças Inflamatórias Intestinais/genética , Colite/induzido quimicamente , Colite/genética , Fenótipo , Sulfato de Dextrana/toxicidade
2.
Proc Natl Acad Sci U S A ; 117(35): 21536-21545, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817490

RESUMO

The building evidence for the contribution of microbiota to human disease has spurred an effort to develop therapies that target the gut microbiota. This is particularly evident in inflammatory bowel diseases (IBDs), where clinical trials of fecal microbiota transplantation have shown some efficacy. To aid the development of novel microbiota-targeted therapies and to better understand the biology underpinning such treatments, we have used gnotobiotic mice to model microbiota manipulations in the context of microbiotas from humans with inflammatory bowel disease. Mice colonized with IBD donor-derived microbiotas exhibit a stereotypical set of phenotypes, characterized by abundant mucosal Th17 cells, a deficit in the tolerogenic RORγt+ regulatory T (Treg) cell subset, and susceptibility to disease in colitis models. Transplanting healthy donor-derived microbiotas into mice colonized with human IBD microbiotas led to induction of RORγt+ Treg cells, which was associated with an increase in the density of the microbiotas following transplant. Microbiota transplant reduced gut Th17 cells in mice colonized with a microbiota from a donor with Crohn's disease. By culturing strains from this microbiota and screening them in vivo, we identified a specific strain that potently induces Th17 cells. Microbiota transplants reduced the relative abundance of this strain in the gut microbiota, which was correlated with a reduction in Th17 cells and protection from colitis.


Assuntos
Transplante de Microbiota Fecal , Doenças Inflamatórias Intestinais/microbiologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Colite/prevenção & controle , Colo/microbiologia , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Citocinas/imunologia , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/imunologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/microbiologia , Células Th17/microbiologia
3.
PLoS One ; 14(4): e0215963, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31022269

RESUMO

The Tec kinases ITK (interleukin-2-inducible T-cell kinase) and RLK (resting lymphocyte kinase) are critical components of the proximal TCR/CD3 signal transduction machinery, and data in mice suggest that ITK negatively modulates regulatory T cell (TREG) differentiation. However, whether Tec kinases modulate TREG development and/or function in human T cells remains unknown. Using a novel self-delivery siRNA platform (sdRNA), we found that ITK knockdown in human primary naïve peripheral blood CD4 T cells increased Foxp3+ expression under both TREG and T helper priming conditions. TREG differentiated under ITK knockdown conditions exhibited enhanced expression of the co-inhibitory receptor PD-1 and were suppressive in a T cell proliferation assay. ITK knockdown decreased IL-17A production in T cells primed under Th17 conditions and promoted Th1 differentiation. Lastly, a dual ITK/RLK Tec kinase inhibitor did not induce Foxp3 in CD4 T cells, but conversely abrogated Foxp3 expression induced by ITK knockdown. Our data suggest that targeting ITK in human T cells may be an effective approach to boost TREG in the context of autoimmune diseases, but concomitant inhibition of other Tec family kinases may negate this effect.


Assuntos
Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Proteínas Tirosina Quinases/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/enzimologia , Polaridade Celular , Humanos , Ativação Linfocitária/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células Th1/citologia , Células Th17/citologia , Regulação para Cima/efeitos dos fármacos
4.
Immunity ; 50(1): 212-224.e4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650377

RESUMO

Microbiota are thought to influence the development and progression of inflammatory bowel disease (IBD), but determining generalizable effects of microbiota on IBD etiology requires larger-scale functional analyses. We colonized germ-free mice with intestinal microbiotas from 30 healthy and IBD donors and determined the homeostatic intestinal T cell response to each microbiota. Compared to microbiotas from healthy donors, transfer of IBD microbiotas into germ-free mice increased numbers of intestinal Th17 cells and Th2 cells and decreased numbers of RORγt+ Treg cells. Colonization with IBD microbiotas exacerbated disease in a model where colitis is induced upon transfer of naive T cells into Rag1-/- mice. The proportions of Th17 and RORγt+ Treg cells induced by each microbiota were predictive of human disease status and accounted for disease severity in the Rag1-/- colitis model. Thus, an impact on intestinal Th17 and RORγt+ Treg cell compartments emerges as a unifying feature of IBD microbiotas, suggesting a general mechanism for microbial contribution to IBD pathogenesis.


Assuntos
Colite/microbiologia , Microbioma Gastrointestinal/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , RNA Ribossômico 16S/genética , Linfócitos T Reguladores/imunologia , Células Th17/metabolismo , Animais , Diferenciação Celular , Colite/induzido quimicamente , Colite/imunologia , Modelos Animais de Doenças , Progressão da Doença , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
5.
mBio ; 9(2)2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535202

RESUMO

The fecal microbiota is a rich source of biomarkers that have previously been shown to be predictive of numerous disease states. Less well studied is the effect of immunomodulatory therapy on the microbiota and its role in response to therapy. This study explored associations between the fecal microbiota and therapeutic response of Crohn's disease (CD) patients treated with ustekinumab (UST; Stelara) in the phase 2 CERTIFI study. Using stool samples collected over the course of 22 weeks, the composition of these subjects' fecal bacterial communities was characterized by sequencing the 16S rRNA gene. Subjects in remission could be distinguished from those with active disease 6 weeks after treatment using random forest models trained on subjects' baseline microbiota and clinical data (area under the curve [AUC] of 0.844, specificity of 0.831, sensitivity of 0.774). The most predictive operational taxonomic units (OTUs) that were ubiquitous among subjects were affiliated with Faecalibacterium and Escherichia or Shigella The median baseline community diversity in subjects in remission 6 weeks after treatment was 1.7 times higher than that in treated subjects with active disease (P = 0.020). Their baseline community structures were also significantly different (P = 0.017). Two OTUs affiliated with Faecalibacterium (P = 0.003) and Bacteroides (P = 0.022) were significantly more abundant at baseline in subjects who were in remission 6 weeks after treatment than those with active CD. The microbiota diversity of UST-treated clinical responders increased over the 22 weeks of the study, in contrast to nonresponsive subjects (P = 0.012). The observed baseline differences in fecal microbiota and changes due to therapeutic response support the potential for the microbiota as a response biomarker.IMPORTANCE CD is a global health concern, with increasing incidence and prevalence, causing large economic and health care impacts. Finding prognostic biomarkers that give clinicians the ability to identify patients more likely to respond to CD treatment at diagnosis will reduce the time subjects receive drugs that are unlikely to be beneficial. OTUs associated with remission after treatment induction, especially Faecalibacterium, could be biomarkers for successful UST treatment of anti-tumor necrosis factor alpha (anti-TNF-α) refractory CD patients. More broadly, these results suggest that the fecal microbiota could be a useful noninvasive biomarker for directing or monitoring the treatment of gastrointestinal diseases.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Doença de Crohn/tratamento farmacológico , Fezes/microbiologia , Microbioma Gastrointestinal , Fatores Imunológicos/administração & dosagem , Ustekinumab/administração & dosagem , Adulto , Bactérias/genética , Ensaios Clínicos Fase II como Assunto , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Humanos , Masculino , Microbiota , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Resultado do Tratamento
6.
J Allergy Clin Immunol ; 141(3): 893-905.e6, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28579374

RESUMO

BACKGROUND: Allergic asthma is a prevalent inflammatory disease of the airways caused by dysregulated immune balance in the lungs with incompletely understood pathogenesis. The recently identified type 2 innate lymphoid cells (ILC2s) play significant roles in the pathogenesis of asthma. Although ILC2-activating factors have been identified, the mechanisms that suppress ILC2s remain largely unknown. Plasmacytoid dendritic cells (pDCs) are important in antiviral immunity and in maintaining tolerance to inert antigens. OBJECTIVE: We sought to address the role of pDCs in regulating ILC2 function and ILC2-mediated airway hyperreactivity (AHR) and lung inflammation. METHODS: We used several murine models, including BDCA-2-diphtheria toxin receptor (DTR) transgenic and IFN-α receptor 1-deficient mice, as well as purified primary ILC2s, to reach our objective. We extended and validated our findings to human ILC2s. RESULTS: We show that activation of pDCs through Toll-like receptor 7/8 suppresses ILC2-mediated AHR and airway inflammation and that depletion of pDCs reverses this suppression. We further show that pDCs suppress cytokine production and the proliferation rate while increasing the apoptosis rate of ILC2s through IFN-α production. Transcriptomic analysis of both human and murine ILC2s confirms the activation of regulatory pathways in ILC2s by IFN-α. CONCLUSION: Activation of pDCs alleviates AHR and airway inflammation by suppressing ILC2 function and survival. Our findings reveal a novel regulatory pathway in ILC2-mediated pulmonary inflammation with important clinical implications.


Assuntos
Asma/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Plasmócitos/imunologia , Animais , Asma/genética , Asma/patologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Plasmócitos/patologia
7.
Nat Genet ; 49(10): 1437-1449, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28892060

RESUMO

A major challenge in inflammatory bowel disease (IBD) is the integration of diverse IBD data sets to construct predictive models of IBD. We present a predictive model of the immune component of IBD that informs causal relationships among loci previously linked to IBD through genome-wide association studies (GWAS) using functional and regulatory annotations that relate to the cells, tissues, and pathophysiology of IBD. Our model consists of individual networks constructed using molecular data generated from intestinal samples isolated from three populations of patients with IBD at different stages of disease. We performed key driver analysis to identify genes predicted to modulate network regulatory states associated with IBD, prioritizing and prospectively validating 12 of the top key drivers experimentally. This validated key driver set not only introduces new regulators of processes central to IBD but also provides the integrated circuits of genetic, molecular, and clinical traits that can be directly queried to interrogate and refine the regulatory framework defining IBD.


Assuntos
Redes Reguladoras de Genes , Genes Reguladores , Genômica/métodos , Doenças Inflamatórias Intestinais/genética , Modelos Genéticos , Transferência Adotiva , Animais , Causalidade , Células Cultivadas , Colite/induzido quimicamente , Colite/genética , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Subpopulações de Linfócitos T/transplante , Transcriptoma
8.
Artigo em Inglês | MEDLINE | ID: mdl-25227295

RESUMO

The intestinal mucosa is the largest body surface exposed to the environment. While there are common features when comparing immune responses along the intestinal mucosa, the small bowel and colon exhibit striking differences in their mechanisms driving immune regulation. The vitamin A (VA) metabolite all-trans retinoic acid (RA) signaling via RA nuclear receptors plays a key role in immune homeostasis in the small bowel, and recent work indicates that RA is required for establishing immune tolerance to dietary antigens in the upper intestinal tract by inducing α4ß7(+)CCR9(+) gut-tropic TREG. In contrast, microbiota-specific TREG in the colon do not appear to require RA, but can be regulated by short-chain fatty acids (SCFA), microbial metabolites that signal through the G protein-coupled receptor GPR43. Moreover, TREG do not need CCR9 to home to the colon, but utilize another G protein-coupled receptor, GPR15, which is upregulated by SCFA. Thus, the mechanisms governing intestinal tolerance to dietary antigens in the upper digestive tract differ from those controlling tolerance to the microbiota in the colon, with RA and SCFA playing key complementary roles in their respective compartments. In addition to VA and SCFA, recent studies have highlighted the roles of other dietary and microbial metabolites that influence immune cell homeostasis across the small and large bowel including dietary ligands for aryl hydrocarbon receptor and microbiota-modified bile acids. Understanding the complex and dynamic interplay between dietary metabolites and commensal microbiota within the intestinal microenvironment could therefore inform novel strategies for the treatment of food allergies and inflammatory bowel diseases.


Assuntos
Homeostase/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Tretinoína/metabolismo , Animais , Diferenciação Celular , Colo/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Humanos , Tolerância Imunológica/imunologia , Mucosa Intestinal/metabolismo , Microbiota , Receptores Acoplados a Proteínas G/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo
9.
Fibrogenesis Tissue Repair ; 4(1): 23, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22011363

RESUMO

BACKGROUND: Fibrocytes are a population of circulating bone-marrow-derived cells that express surface markers for leukocytes and mesenchymal cells, and are capable of differentiating into myofibroblasts. They have been observed at sites of active fibrosis and increased circulating numbers correlate with mortality in idiopathic pulmonary fibrosis (IPF). Inhibition of chemokine (C-C motif) receptor 2 (CCR2) during experimental models of lung fibrosis reduces lung collagen deposition, as well as reducing lung fibrocyte accumulation. The aim of the present study was to determine whether human and mouse fibrocytes express functional CCR2. RESULTS: Following optimized and identical human and murine fibrocyte isolation, both cell sources were shown to be positive for CCR2 by flow cytometry and this expression colocalized with collagen I and CD45. Human blood fibrocytes stimulated with the CCR2 ligand chemokine (C-C motif) ligand 2 (CCL2), demonstrated increased proliferation (P < 0.005) and differentiation into myofibroblasts (P < 0.001), as well as a chemotactic response (P < 0.05). Murine fibrocytes also responded to CCR2 stimulation, with CCL12 being more potent than CCL2. CONCLUSIONS: This study directly compares the functional responses of human and murine fibrocytes to CCR2 ligands, and following comparable isolation techniques. We have shown comparable biological effects, strengthening the translatability of the murine models to human disease with respect to targeting the CCR2 axis to ameliorate disease in IPF patients.

10.
Am J Pathol ; 179(1): 104-15, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21640974

RESUMO

IL-33 and its soluble receptor and cell-associated receptor (ST2L) are all increased in clinical and experimental asthma. The present study addressed the hypothesis that ST2L impairs the therapeutic effects of CpG in a fungal model of asthma. C57BL/6 mice were sensitized to Aspergillus fumigatus and challenged via i.t. instillation with live A. fumigatus conidia. Mice were treated with IgG alone, anti-ST2L monoclonal antibody (mAb) alone, CpG alone, IgG plus CpG, or anti-ST2L mAb plus CpG every other day from day 14 to day 28 and investigated on day 28 after conidia. Lung ST2L and toll-like receptor 9 protein expression levels concomitantly increased in a time-dependent manner during fungal asthma. Therapeutic blockade of ST2L with an mAb attenuated key pathological features of this model. At subtherapeutic doses, neither anti-ST2L mAb nor CpG alone affected fungal asthma severity. However, airway hyperresponsiveness, mucus cell metaplasia, peribronchial fibrosis, and fungus retention were markedly reduced in asthmatic mice treated with the combination of both. Whole lung CXCL9 levels were significantly elevated in the combination group but not in the controls. Furthermore, in asthmatic mice treated with the combination therapy, dendritic cells generated significantly greater IL-12p70 with CpG in vitro compared with control dendritic cells. The combination of anti-ST2L mAb with CpG significantly attenuated experimental asthma, suggesting that targeting ST2L might enhance the therapeutic efficacy of CpG during allergic inflammation.


Assuntos
Aspergilose Broncopulmonar Alérgica/prevenção & controle , Asma/prevenção & controle , Pulmão/efeitos dos fármacos , Oligodesoxirribonucleotídeos/uso terapêutico , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/fisiologia , Animais , Anticorpos Monoclonais/uso terapêutico , Aspergilose Broncopulmonar Alérgica/imunologia , Aspergilose Broncopulmonar Alérgica/microbiologia , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/metabolismo , Asma/microbiologia , Western Blotting , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/microbiologia , Hiper-Reatividade Brônquica/prevenção & controle , Estudos de Casos e Controles , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Doença Crônica , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Fibrose/prevenção & controle , Humanos , Técnicas Imunoenzimáticas , Imunoglobulina G/uso terapêutico , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
11.
BMC Immunol ; 11: 52, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20958987

RESUMO

BACKGROUND: Interleukin-33 is a member of the IL-1 cytokine family whose functions are mediated and modulated by the ST2 receptor. IL-33-ST2 expression and interactions have been explored in mouse macrophages but little is known about the effect of IL-33 on human macrophages. The expression of ST2 transcript and protein levels, and IL-33-mediated effects on M1 (i.e. classical activation) and M2 (i.e. alternative activation) chemokine marker expression in human bone marrow-derived macrophages were examined. RESULTS: Human macrophages constitutively expressed the membrane-associated (i.e. ST2L) and the soluble (i.e. sST2) ST2 receptors. M2 (IL-4 + IL-13) skewing stimuli markedly increased the expression of ST2L, but neither polarizing cytokine treatment promoted the release of sST2 from these cells. When added to naïve macrophages alone, IL-33 directly enhanced the expression of CCL3. In combination with LPS, IL-33 blocked the expression of the M2 chemokine marker CCL18, but did not alter CCL3 expression in these naive cells. The addition of IL-33 to M1 macrophages markedly increased the expression of CCL18 above that detected in untreated M1 macrophages. Similarly, alternatively activated human macrophages treated with IL-33 exhibited enhanced expression of CCL18 and the M2 marker mannose receptor above that detected in M2 macrophages alone. CONCLUSIONS: Together, these data suggest that primary responses to IL-33 in bone marrow derived human macrophages favors M1 chemokine generation while its addition to polarized human macrophages promotes or amplifies M2 chemokine expression.


Assuntos
Quimiocina CCL3/biossíntese , Quimiocinas CC/biossíntese , Interleucinas/metabolismo , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocinas CC/genética , Quimiocinas CC/imunologia , Via Alternativa do Complemento/efeitos dos fármacos , Via Clássica do Complemento/efeitos dos fármacos , Citocinas/imunologia , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Interleucinas/genética , Interleucinas/imunologia , Lectinas Tipo C/biossíntese , Lectinas Tipo C/genética , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Receptor de Manose , Lectinas de Ligação a Manose/biossíntese , Lectinas de Ligação a Manose/genética , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Equilíbrio Th1-Th2
12.
Respir Res ; 10: 43, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19486528

RESUMO

BACKGROUND: The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR) 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases. METHODS: TLR3 knock-out (KO) mice and C57B6 (WT) mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C). RESULTS: There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C)-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFalpha were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C), the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C)-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy. CONCLUSION: These findings demonstrate that TLR3 activation by poly(I:C) modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.


Assuntos
Inflamação/induzido quimicamente , Poli I-C/farmacologia , Receptor 3 Toll-Like/fisiologia , Animais , Linhagem Celular , Citocinas/metabolismo , Feminino , Humanos , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pletismografia , Testes de Função Respiratória , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/genética
13.
Cytokine ; 46(1): 17-23, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19232499

RESUMO

Given that CD4+ cells are found in the lungs of patients with fibrotic lung diseases such as idiopathic pulmonary fibrosis (IPF) we hypothesized that IL-16, a potent chemoattractant for CD4+ cells, may be involved in the pathogenesis of this disease. We found that baseline IL-16 gene expression is greater in fibroblasts isolated from IPF patients compared to non-fibrotic fibroblasts. Furthermore, IL-16 gene expression increased in IPF fibroblasts following stimulation with either of the pro-fibrotic growth factors TGFb1 or PDGF. In contrast, PDGF had no effect on IL-16 gene expression in non-fibrotic lung fibroblasts, whereas TGFb1 down-regulated IL-16 gene expression in non-fibrotic fibroblasts. To gain a better understanding of an association of IL-16 with fibrosis, we used the bleomycin-induced mouse model of fibrosis to examine IL-16 gene expression. Our current study demonstrates that IL-16, and its activator caspase 3, are highly expressed at the mRNA level in the lungs of mice prior to the deposition of collagen following intratracheal bleomycin administration. We then sought to determine the role of IL-16 in the generation of fibrosis in the mouse by using IL-16KO mice. There were no differences observed between IL-16WT and IL-16KO mice (cellular infiltrate, collagen deposition, total lung collagen generation and cytokine expression) following bleomycin instillation. These results indicate that IL-16 is prominently expressed in both murine and human fibrosis however as complete loss of this cytokine did not modulate pulmonary fibrosis, IL-16 is a candidate biomarker for IPF.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Fibrose , Interleucina-16/fisiologia , Pulmão/patologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose/metabolismo , Citometria de Fluxo/métodos , Interleucina-16/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos
14.
Am J Respir Crit Care Med ; 179(5): 414-25, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19060230

RESUMO

RATIONALE: Studies in patients and experimental animals provide compelling evidence of the involvement of the major thrombin receptor, proteinase-activated receptor-1 (PAR(1)), and the potent chemokine, chemokine (CC motif) ligand-2 (CCL2)/monocyte chemotactic protein-1, in the pathogenesis of idiopathic pulmonary fibrosis (IPF). PAR(1) knockout mice are protected from bleomycin-induced lung inflammation and fibrosis and this protection is associated with marked attenuation in CCL2 induction. OBJECTIVES: The aim of this study was to determine which cell types represent the major source of PAR(1)-inducible CCL2 in the fibrotic lung. METHODS: Using immunohistochemistry and dual immunofluorescence, we examined PAR(1) and CCL2 expression in the bleomycin model and human IPF lung. PAR(1) and CCL2 gene expression was also assessed in laser-captured alveolar septae from patients with IPF. The ability of PAR(1) to induce CCL2 production by lung epithelial cells was also examined in vitro. MEASUREMENTS AND MAIN RESULTS: We report for the first time that PAR(1) and CCL2 are coexpressed and co-up-regulated on the activated epithelium in fibrotic areas in IPF. Similar observations were found in bleomycin-induced lung injury. Furthermore, we show that thrombin is a potent inducer of CCL2 gene expression and protein release by cultured lung epithelial cells via a PAR(1)-dependent mechanism. CONCLUSIONS: These data support the notion that PAR(1) activation on lung epithelial cells may represent an important mechanism leading to increased local CCL2 release in pulmonary fibrosis. Targeting PAR(1) on the pulmonary epithelium may offer a unique opportunity for therapeutic intervention in pulmonary fibrosis and other inflammatory and fibroproliferative conditions associated with excessive local generation of thrombin and CCL2 release.


Assuntos
Quimiocina CCL2/metabolismo , Fibrose Pulmonar/metabolismo , Receptor PAR-1/metabolismo , Sequência de Aminoácidos , Animais , Bleomicina , Estudos de Casos e Controles , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor PAR-1/biossíntese , Receptor PAR-1/genética , Receptores CCR2/metabolismo , Trombina/farmacologia
15.
Int J Toxicol ; 27(5): 351-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19037805

RESUMO

Interleukin-13 (IL-13) plays a central role in chronic airway diseases, including asthma. These studies were conducted to evaluate the safety of administration of a human anti-IL-13 monoclonal antibody (mAb) to normal macaques and in macaques with allergic asthma. In addition, serum and bronchioalveolar lavage fluid were collected from allergic cynomolgus macaques in order to identify potential surrogate markers of IL-13 pharmacology that could be useful for subsequent clinical trials. In vitro studies demonstrated that the anti-IL-13 mAb inhibited the pharmacological actions of both human and cynomolgus macaque IL-13. Allergic macaques were treated systemically with 10 mg/kg anti-IL-13 mAb 1 day prior to inhaled Ascaris suum antigen challenge. Normal macaques were dosed intravenously with anti-IL-13 once per week for 3 weeks at doses of 10 or 50 mg/kg. Treatment of macaques with the anti-IL-13 mAb was not associated with any toxicologically significant findings. A slight treatment-related but nonadverse decrease in platelet counts was observed in both the normal and allergic macaques. In allergic macaques, the anti-IL-13 mAb treatment did not affect lung function, lung eosinophilia, or serum or BAL immunoglobulin E (IgE) concentrations but did produce a reduction in BAL and serum eotaxin concentrations (p < .05) at 6 h post antigen challenge. This study shows that administration of an anti-IL-13 mAb was well tolerated in both normal and allergic asthmatic macaques and that serum eotaxin concentrations may be a useful early in vivo marker for evaluating IL-13 inhibition in patients with asthma.


Assuntos
Antiasmáticos , Anticorpos Monoclonais , Asma/tratamento farmacológico , Interleucina-13/imunologia , Animais , Antiasmáticos/efeitos adversos , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Asma/sangue , Asma/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Quimiocinas CC/sangue , Quimiocinas CC/imunologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Eosinófilos/citologia , Humanos , Injeções Intravenosas , Interleucina-13/sangue , Subunidade alfa1 de Receptor de Interleucina-13/imunologia , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Macaca , Fosforilação , Ligação Proteica , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Fator de Transcrição STAT6/metabolismo
16.
J Allergy Clin Immunol ; 122(3): 521-528, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18554706

RESUMO

BACKGROUND: Surfactant protein (SP) D shares target cells with the proinflammatory cytokine TNF-alpha, an important autocrine stimulator of dendritic cells and macrophages in the airways. OBJECTIVE: We sought to study the mechanisms by which TNF-alpha and SP-D can affect cellular components of the pulmonary innate immune system. METHODS: Cytokine and SP-D protein and mRNA expression was assessed by means of ELISA, Western blotting, and real-time PCR, respectively, by using in vivo models of allergic airway sensitization. Macrophage and dendritic cell phenotypes were analyzed by means of FACS analysis. Maturation of bone marrow-derived dendritic cells was investigated in vitro. RESULTS: TNF-alpha, elicited either by allergen exposure or pulmonary overexpression, induced SP-D, IL-13, and mononuclear cell influx in the lung. Recombinant IL-13 by itself was also capable of enhancing SP-D in vivo and in vitro, and the SP-D response to allergen challenge was impaired in IL-13-deficient mice. Allergen-induced increase of SP-D in the airways coincided with resolution of TNF-alpha release and cell influx. SP-D-deficient mice had constitutively high numbers of alveolar mononuclear cells expressing TNF-alpha, MHC class II, CD86, and CD11b, characteristics of proinflammatory, myeloid dendritic cells. Recombinant SP-D significantly suppressed all of these molecules in bone marrow-derived dendritic cell cultures. CONCLUSIONS: TNF-alpha can contribute to enhanced SP-D production in the lung indirectly through inducing IL-13. SP-D, on the other hand, can antagonize the proinflammatory effects of TNF-alpha on macrophages and dendritic cells, at least partly, by inhibiting production of this cytokine.


Assuntos
Células Dendríticas/imunologia , Interleucina-13/metabolismo , Macrófagos/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Dendríticas/metabolismo , Interleucina-13/deficiência , Interleucina-13/imunologia , Pulmão/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína D Associada a Surfactante Pulmonar/deficiência , Proteína D Associada a Surfactante Pulmonar/imunologia , Fator de Necrose Tumoral alfa/imunologia
17.
Int J Biochem Cell Biol ; 40(10): 2174-82, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18395486

RESUMO

One of the hallmarks of idiopathic pulmonary fibrosis with a usual interstitial pneumonia histological pathology (IPF/UIP) is excess collagen deposition, due to enhanced fibroblast extracellular matrix synthetic activity. Studies using murine models of lung fibrosis have elucidated a pro-fibrotic pathway involving IL-13 driving CCL2, which in turn drives TGFbeta1 in lung fibroblasts. Therefore, we sought to determine whether this pathway exists in the human fibrotic setting by evaluating human IPF/UIP fibroblasts. IPF/UIP fibroblasts have an increased baseline fibrotic phenotype compared to non-fibrotic fibroblasts. Interestingly, non-fibrotic fibroblasts responded in a pro-fibrotic manner to TGFbeta1 but were relatively non-responsive to IL-13 or CCL2, whereas, IPF/UIP cells were hyper-responsive to TGFbeta1, IL-13 and CCL2. Interestingly, TGFbeta1, CCL2 and IL-13 all upregulated TGFbeta receptor and IL-13 receptor expression, suggesting an ability of the mediators to modulate the function of each other. Furthermore, in vivo, neutralization of both JE and MCP5, the two functional orthologs of CCL2, during bleomycin-induced pulmonary fibrosis significantly reduced collagen deposition as well as JE and CCR2 expression. Also in the bleomycin model, CTGF, which is highly induced following TGFbeta stimulation, was attenuated with anti-JE/anti-MCP5 treatment. Overall this study demonstrates an interplay between TGFbeta1, IL-13 and CCL2 in IPF/UIP, where these three mediators feedback on each other, promoting the fibrotic response.


Assuntos
Quimiocina CCL2/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Interleucina-13/farmacologia , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/farmacologia , Actinas/metabolismo , Animais , Anticorpos/farmacologia , Linhagem Celular , Colágeno/biossíntese , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quimioatraentes de Monócitos/metabolismo , Testes de Neutralização , Fenótipo , Fibrose Pulmonar/genética , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo
18.
Cytokine ; 38(3): 145-50, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17624801

RESUMO

Biologic activities of IL-16 have been well described (e.g., chemotaxis of CD4+ cells, CD25 upregulation, secretion of IL-1b, IL-4 and TNF-a secretion) but very few signaling events have been described. To gain a better understanding of how the biologic activities of IL-16 are regulated following receptor engagement (CD4) we have analyzed the activation state of numerous STAT proteins in primary human peripheral blood mononuclear cells (PBMCs) and the human monocytic cell line THP-1 following IL-16 stimulation. Of the four STAT proteins tested, only STAT6 was activated (phosphorylated) in a dose-dependant manner by IL-16. The activation of STAT6 was completely abolished when IL-16 was pre-incubated with soluble CD4 (the IL-16 cell surface receptor), demonstrating the need for CD4 engagement in STAT6 activation. These results are the first to demonstrate a link between IL-16 and STAT6 activation.


Assuntos
Antígenos CD4/metabolismo , Interleucina-16/metabolismo , Fator de Transcrição STAT6/metabolismo , Sequência de Bases , Antígenos CD4/genética , Linhagem Celular , Primers do DNA/genética , Humanos , Técnicas In Vitro , Interleucina-16/genética , Interleucina-16/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
19.
Bioorg Med Chem Lett ; 17(11): 2992-7, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17418570

RESUMO

DPC168, a benzylpiperidine-substituted aryl urea CCR3 antagonist evaluated in clinical trials, was a relatively potent inhibitor of the 2D6 isoform of cytochrome P-450 (CYP2D6). Replacement of the cyclohexyl central ring with saturated heterocycles provided potent CCR3 antagonists with improved selectivity against CYP2D6. The favorable preclinical profile of DPC168 was maintained in an acetylpiperidine derivative, BMS-570520.


Assuntos
Compostos de Benzil/química , Compostos de Benzil/farmacologia , Inibidores do Citocromo P-450 CYP2D6 , Compostos de Fenilureia/química , Piperidinas/química , Piperidinas/farmacologia , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Compostos de Benzil/síntese química , Bioensaio , Células Cultivadas , Humanos , Camundongos , Pan troglodytes , Compostos de Fenilureia/farmacologia , Piperidinas/síntese química , Receptores CCR3 , Relação Estrutura-Atividade
20.
Am J Respir Cell Mol Biol ; 37(1): 121-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17379849

RESUMO

Apoptosis of lung structural cells is crucial in the process of normal tissue repair. Insufficient apoptosis of lung fibroblasts may contribute to the development of fibrosis. Since the CC chemokine ligand 2 (CCL2) is associated with fibrotic disease and the cytokine IL-6 blocks apoptosis in many cell types, we hypothesized that CCL2 may contribute to the development of lung fibrosis by inducing IL-6, which, in turn, inhibits fibroblast apoptosis. Fibroblasts were cultured in the presence of CCL2, which stimulated IL-6 production and mRNA expression in a concentration-dependent manner (250-1,000 ng/ml). This effect was mediated through the ERK1/2 signaling pathway. In addition, through a feedback loop, the secreted IL-6 activated the fibroblasts as evidenced by immunoblotting for phosphorylated STAT3. CCL2 reduced fibroblast apoptosis induced by staurosporin as detected by DNA content profiling (53.6 +/- 10.8%, P < 0.05) and apoptosis induced by serum starvation as detected by COMET assay (Tail moment: 36.6 +/- 9.9 of control versus 3.6 +/- 1.4 of CCL2, P < 0.01). In the presence of anti-IL-6 neutralizing antibody, however, this anti-apoptotic effect of CCL2 was eliminated. These data suggest that CCL2 mediates fibroblast survival by inhibiting apoptosis through IL-6/STAT3 signaling and provides a novel mechanism through which CCL2 may contribute to the development and maintenance of lung fibrosis.


Assuntos
Quimiocina CCL2/fisiologia , Fibroblastos/metabolismo , Interleucina-6/fisiologia , Fator de Transcrição STAT3/fisiologia , Apoptose , Sobrevivência Celular , Ensaio Cometa , Relação Dose-Resposta a Droga , Fibrose , Citometria de Fluxo , Humanos , Interleucina-6/metabolismo , Modelos Biológicos , Fosforilação , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA