Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(3): 738-756, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38315147

RESUMO

Primary tumor growth and metastasis in triple-negative breast cancer (TNBC) require supporting vasculature, which develop through a combination of endothelial angiogenesis and vasculogenic mimicry (VM), a process associated with aggressive metastatic behavior in which vascular-like structures are lined by tumor cells. We developed αEGFR-E-P125A, an antibody-endostatin fusion protein that delivers a dimeric, mutant endostatin (E-P125A) payload that inhibits TNBC angiogenesis and VM in vitro and in vivo. To characterize the mechanisms associated with induction and inhibition of VM, RNA sequencing (RNA-seq) of MDA-MB-231-4175 TNBC cells grown in a monolayer (two-dimensional) was compared with cells plated on Matrigel undergoing VM [three-dimensional (3D)]. We then compared RNA-seq between TNBC cells in 3D and cells in 3D with VM inhibited by αEGFR-E-P125A (EGFR-E-P125A). Gene set enrichment analysis demonstrated that VM induction activated the IL6-JAK-STAT3 and angiogenesis pathways, which were downregulated by αEGFR-E-P125A treatment.Correlative analysis of the phosphoproteome demonstrated decreased EGFR phosphorylation at Y1069, along with decreased phosphorylation of focal adhesion kinase Y397 and STAT3 Y705 sites downstream of α5ß1 integrin. Suppression of phosphorylation events downstream of EGFR and α5ß1 integrin demonstrated that αEGFR-E-P125A interferes with ligand-receptor activation, inhibits VM, and overcomes oncogenic signaling associated with EGFR and α5ß1 integrin cross-talk. In vivo, αEGFR-E-P125A treatment decreased primary tumor growth and VM, reduced lung metastasis, and confirmed the inhibition of signaling events observed in vitro. Simultaneous inhibition of EGFR and α5ß1 integrin signaling by αEGFR-E-P125A is a promising strategy for the inhibition of VM, tumor growth, motility, and metastasis in TNBC and other EGFR-overexpressing tumors. SIGNIFICANCE: αEGFR-E-P125A reduces VM, angiogenesis, tumor growth, and metastasis by inhibiting EGFR and α5ß1 integrin signaling, and is a promising therapeutic agent for TNBC treatment, used alone or in combination with chemotherapy.


Assuntos
Imunoconjugados , Neoplasias de Mama Triplo Negativas , Humanos , Integrinas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Endostatinas/metabolismo , Imunoconjugados/metabolismo , Integrina alfa5beta1/metabolismo , Receptores ErbB/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
Cells ; 10(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34831127

RESUMO

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited therapeutic options. Metastasis is the major cause of TNBC mortality. Angiogenesis facilitates TNBC metastases. Many TNBCs also form vascular channels lined by tumor cells rather than endothelial cells, known as 'vasculogenic mimicry' (VM). VM has been linked to metastatic TNBC behavior and resistance to anti-angiogenic agents. Epidermal growth factor receptor (EGFR) is frequently expressed on TNBC, but anti-EGFR antibodies have limited efficacy. We synthesized an anti-EGFR antibody-endostatin fusion protein, αEGFR IgG1-huEndo-P125A (αEGFR-E-P125A), designed to deliver a mutant endostatin, huEndo-P125A (E-P125A), to EGFR expressing tumors, and tested its effects on angiogenesis, TNBC VM, and motility in vitro, and on the growth and metastasis of two independent human TNBC xenograft models in vivo. αEGFR-E-P125A completely inhibited the ability of human umbilical vein endothelial cells to form capillary-like structures (CLS) and of TNBC cells to engage in VM and form tubes in vitro. αEGFR-E-P125A treatment reduced endothelial and TNBC motility in vitro more effectively than E-P125A or cetuximab, delivered alone or in combination. Treatment of TNBC with αEGFR-E-P125A was associated with a reduction in cytoplasmic and nuclear ß-catenin and reduced phosphorylation of vimentin. αEGFR-E-P125A treatment of TNBC xenografts in vivo inhibited angiogenesis and VM, reduced primary tumor growth and lung metastasis of orthotopically implanted MDA-MB-468 TNBC cells, and markedly decreased lung metastases following intravenous injection of MDA-MB-231-4175 lung-tropic TNBC cells. Combined inhibition of angiogenesis, VM, and TNBC motility mediated by αEGFR-E-P125A is a promising strategy for the prevention of TNBC metastases.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Endostatinas/metabolismo , Receptores ErbB/antagonistas & inibidores , Imunoglobulina G/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Inibidores da Angiogênese/farmacologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Camundongos , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Vimentina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA