Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 11(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39195828

RESUMO

The effect of dietary inclusion of Moringa oleifera leaf powder (MLP) on the growth, meat quality, carcass characteristics, hematobiochemical profile, and cecal bacteria of broiler chicken was investigated in this research trial. In this study, 192-day-old Arbor Acre broiler chicks were assigned in a completely randomized design to three groups: control, antibiotic, and MLP. A standard basal diet was given to the control group, while the antibiotic group received 75 mg/kg chlortetracycline, and the MLP group received 100 mg/kg M. oleifera leaf powder supplemented basal diet. Each group was further divided into eight replicates consisting of eight birds each, and the trial ran for 35 days. Among the groups, the MLP-fed broilers achieved the highest final body weight (FBW), average daily gain (ADG), and average daily feed intake (ADFI). Notably, the FCR for the whole experimental period was lower in the MLP group, indicating a more efficient use of feed for growth. Supplementation of MLP with basal diet significantly increased (p < 0.05) the weight of thighs and drumsticks relative to live weight %, while the spleen and abdominal fat weight (% of live weight) were significantly decreased (p < 0.05). Adding MLP to the diet improved the meat quality of broilers, as indicated by the highest pH of meat at 45 min and the lowest cooking loss (%) observed in this group. MLP exhibited hypocholesterolemic and hypolipidemic effects, with the lowest total cholesterol and triglyceride levels compared to non-supplemented groups. The hematological profile revealed that the MLP group exhibited the highest RBC count and Hb level, while also showing the lowest H/L ratio. Moringa supplementation significantly (p < 0.05) modulated the cecal bacterial population, reducing pathogenic E. coli and Shigella spp. while increasing beneficial Lactobacillus spp. and the total aerobic plate count (TAPC). In conclusion, Moringa oleifera leaf powder (MLP) can be used as a natural feed supplement for promoting the growth, meat quality, healthy blood, and sound health of broilers.

2.
J Anim Sci Biotechnol ; 15(1): 62, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702804

RESUMO

BACKGROUND: Dietary supplementation of xylooligosaccharides (XOS) has been found to influence gut health by manipulating cecal microbiota and producing microbe-origin metabolites. But no study investigated and compared the effect of in ovo feeding of xylobiose (XOS2) and xylotriose (XOS3) in chickens. This study investigated the effect of in ovo feeding of these XOS compounds on post-hatch gut health parameters in chickens. A total of 144 fertilized chicken eggs were divided into three groups: a) non-injected control (CON), b) XOS2, and c) XOS3. On the 17th embryonic day, the eggs of the XOS2 and XOS3 groups were injected with 3 mg of XOS2 and XOS3 diluted in 0.5 mL of 0.85% normal saline through the amniotic sac. After hatching, the chicks were raised for 21 d. Blood was collected on d 14 to measure plasma immunoglobulin. Cecal digesta were collected for measuring short-chain fatty acids (SCFA) on d 14 and 21, and for microbial ecology and microbial metabolic pathway analyses on d 7 and 21. RESULTS: The results were considered significantly different at P < 0.05. ELISA quantified plasma IgA and IgG on d 14 chickens, revealing no differences among the treatments. Gas chromatography results showed no significant differences in the concentrations of cecal SCFAs on d 14 but significant differences on d 21. However, the SCFA concentrations were lower in the XOS3 than in the CON group on d 21. The cecal metagenomics data showed that the abundance of the family Clostridiaceae significantly decreased on d 7, and the abundance of the family Oscillospiraceae increased on d 21 in the XOS2 compared to the CON. There was a reduction in the relative abundance of genus Clostridium sensu stricto 1 in the XOS2 compared to the CON on d 7 and the genus Ruminococcus torques in both XOS2 and XOS3 groups compared to the CON on d 21. The XOS2 and XOS3 groups reduced the genes for chondroitin sulfate degradation I and L-histidine degradation I pathways, which contribute to improved gut health, respectively, in the microbiome on d 7. In contrast, on d 21, the XOS2 and XOS3 groups enriched the thiamin salvage II, L-isoleucine biosynthesis IV, and O-antigen building blocks biosynthesis (E. coli) pathways, which are indicative of improved gut health. Unlike the XOS3 and CON, the microbiome enriched the pathways associated with energy enhancement, including flavin biosynthesis I, sucrose degradation III, and Calvin-Benson-Bassham cycle pathways, in the XOS2 group on d 21. CONCLUSION: In ovo XOS2 and XOS3 feeding promoted beneficial bacterial growth and reduced harmful bacteria at the family and genus levels. The metagenomic-based microbial metabolic pathway profiling predicted a favorable change in the availability of cecal metabolites in the XOS2 and XOS3 groups. The modulation of microbiota and metabolic pathways suggests that in ovo XOS2 and XOS3 feeding improved gut health during the post-hatch period of broilers.

3.
Poult Sci ; 103(2): 103325, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096670

RESUMO

Modern broilers are highly susceptible to environmental and pathogenic threats, leading to gut disorders and poor nutrient utilization if not managed properly. Nutritional programming using several feedstuffs and coproducts to manage gut health has been studied. This study used microalgae as a functional compound and xylanase enzyme in broilers' diets as a strategy to manage gut health. A total of 162 one-day-old unsexed Cobb 500 broiler chicks were randomly assigned to 1 of the 3 dietary treatments: a) corn-soybean meal-based control diet (CON), b) 3% microalgae (MAG), and c) MAG with xylanase enzyme (MAG+XYN). The chicks were reared for 35 days (d) on a floor pen system maintaining standard environment conditions to evaluate the effects of microalgae, with or without xylanase supplementation, on serum immunoglobulins, cecal short-chain fatty acids (SCFA) production, cecal microbial diversity, and metabolic pathways. No significant differences were found for serum immunoglobulin and cecal SCFA among the treatment groups (P > 0.05). Relative microbial abundance at the genus level showed that MAG and MAG+XYN groups had a diverse microbial community on d 3 and d 35. However, no bacterial genus had a significant difference (P > 0.05) in their relative abundance on d 3, but 16 genera showed significant differences (P < 0.05) in their relative abundance among the dietary treatments on d 35. Most of these bacteria were SCFA-producing bacteria. Moreover, MAG and MAG+XYN-fed broilers had better responses than CON groups for metabolic pathways (D-mannose degradation, pectin degradation I and II, ß-1-4-mannan degradation, tetrahydrofolate biosynthesis, glutathione biosynthesis, glutathione-peroxide redox reactions, lactate fermentation to propionate, acetate, and hydrogen, etc.) both on d 3 and d 35. The results suggest that using microalgae, with or without xylanase, had no statistical impact on serum immunoglobulins and cecal SCFA production in broilers. However, an improvement in the cecal microbial diversity and metabolic pathways, which are essential indicators of gut health and nutrient utilization, was observed. Most of the improved metabolic pathways were related to fiber utilization and oxidative stress reduction.


Assuntos
Galinhas , Microalgas , Animais , Galinhas/fisiologia , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Suplementos Nutricionais , Glutationa/metabolismo , Redes e Vias Metabólicas , Imunoglobulinas/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
4.
Poult Sci ; 102(11): 103056, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722276

RESUMO

Microalgae are becoming potential sustainable feed ingredients, whereas terrestrial feedstuffs are becoming scarce and costly. They are rich in nutritional and functional values but have lower digestibility. This study evaluated the effects of microalgae with or without xylanase supplementation on growth performance and gut health of broiler chickens. A total of 162-day-old Cobb 500 chicks were raised for 35 d. Birds were fed with either 1 of the 3 dietary treatments: 1) corn-soybean meal-based diet (CON), 2) CON + 3% microalgae (MAG), and 3) MAG + xylanase (MAG+XYN) in 2 phases (starter: d 0-21 and finisher: d 22-35) in mash form. Each dietary treatment had 6 replicates, with 9 birds in each replicate. The level of significance was considered at the P value <0.05. The BW, ADG, and ADFI were significantly higher in MAG by 50%, 52.5%, and 42.4%, respectively, and MAG+XYN by 44.1%, 49.7%, and 38.6%, respectively, compared to the CON group. No significant difference was observed for FCR; however, FCR was reduced by 6.3% in both MAG and MAG+XYN groups compared to the CON group. The carcass and organ weight relative to the total body weight were not significantly different among the treatments. The expressions of Zonula occludens 1 (ZO1), Cluster of differentiation 56 (CD56), and Solute carrier family 7 member 7 (SLC7A7) were significantly modulated, for example, by 3.7, 3.9, and 3.3 folds, respectively, in the MAG group compared to CON and 0.8, 0.6, and 1.1 folds, respectively, in the MAG group compared to MAG+XYN groups on d 35. Villi surface area (VSA) of ileum tended to increase on d 3 (P = 0.0725) and d 35 (P = 0.0785) in the MAG and MAG+XYN groups, compared to the CON group. The results suggest that adding microalgae with or without xylanase to broiler's diet could promote growth performance and show a tendency to improve gut health parameters. The nutrient profile and its functional properties make microalgae a valuable resource to the poultry industry as a part substitution of corn and soybean meal and a functional feed supplement to modulate the gut health of broilers.

5.
Poult Sci ; 102(10): 102958, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540947

RESUMO

Heat stress in poultry is a serious concern, affecting their health and productivity. To effectively address the issue of heat stress, it is essential to include antioxidant-rich compounds in the poultry diet to ensure the proper functioning of the redox system. Microalgae (Spirulina platensis) are rich in antioxidants and have several health benefits in humans and animals. However, its role in health and production and the underlying mechanism in heat-stressed broilers are poorly understood. This study aimed to determine the effect of microalgae supplementation on the health and production of heat-stressed broilers. Cobb500 day-old chicks (N = 144) were raised in litter floor pens (6 pens/treatment and 8 birds/pen). The treatment groups were: 1) no heat stress (NHS), 2) heat stress (HS), and 3) heat stress + 3% microalgae (HS+MAG). The broilers in the HS+MAG group were fed a diet supplemented with 3% microalgae, whereas NHS and HS groups were fed a standard broiler diet. Broilers in the NHS were raised under standard temperature (20°C-24°C), while HS and HS+MAG broilers were subjected to cyclic heat stress from d 22 to 35 (32°C-33°C for 8 h). Heat stress significantly decreased the final body weight, whereas the supplementation of microalgae increased the final body weight of broilers (P < 0.05). The expressions of ileal antioxidant (GPX3), immune-related (IL4), and tight-junction (CLDN2) genes were increased in microalgae-supplemented broilers compared to heat-stressed broilers (P < 0.05). The ileal villus height to crypt depth ratio was improved in microalgae-supplemented broilers (P < 0.05). In addition, microbial alpha, and beta diversities were higher in the HS+MAG group compared to the HS group (P < 0.05). There was an increase in volatile fatty acid-producing bacteria at the genus level, such as Ruminococcus, Ocillospira, Lactobacillus, Oscillobacter, Flavonifractor, and Colidextribacter in the group that received microalgae supplementation. In conclusion, dietary supplementation of microalgae improved the growth performances of heat-stressed broilers by improving their physiogenomics. Thus, the dietary inclusion of microalgae can potentially mitigate heat stress in broilers.


Assuntos
Antioxidantes , Microalgas , Humanos , Animais , Antioxidantes/metabolismo , Galinhas , Suplementos Nutricionais , Dieta/veterinária , Resposta ao Choque Térmico , Peso Corporal , Ração Animal/análise , Temperatura Alta
6.
Front Vet Sci ; 8: 754246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859087

RESUMO

Early growth and development of the gastrointestinal tract are of critical importance to enhance nutrients' utilization and optimize the growth of poultry. In the current production system, chicks do not have access to feed for about 48-72 h during transportation between hatchery and production farms. This lag time affects early nutrient intake, natural exposure to the microbiome, and the initiation of beneficial stimulation of the immune system of chicks. In ovo feeding can provide early nutrients and additives to embryos, stimulate gut microflora, and mitigate the adverse effects of starvation during pre-and post-hatch periods. Depending on the interests, the compounds are delivered to the embryo either around day 12 or 17 to 18 of incubation and via air sac or amnion. In ovo applications of bioactive compounds like vaccines, nutrients, antibiotics, prebiotics, probiotics, synbiotics, creatine, follistatin, L-carnitine, CpG oligodeoxynucleotide, growth hormone, polyclonal antimyostatin antibody, peptide YY, and insulin-like growth factor-1 have been studied. These compounds affect hatchability, body weight at hatch, physiological functions, immune responses, gut morphology, gut microbiome, production performance, and overall health of birds. However, the route, dose, method, and time of in ovo injection and host factors can cause variation, and thereby inconsistencies in results. Studies using this method have manifested the benefits of injection of different single bioactive compounds. But for excelling in poultry production, researchers should precisely know the proper route and time of injection, optimum dose, and effective combination of different compounds. This review paper will provide an insight into current practices and available findings related to in ovo feeding on performance and health parameters of poultry, along with challenges and future perspectives of this technique.

7.
Animals (Basel) ; 10(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066185

RESUMO

Probiotics are live microorganisms which, when administered in adequate amounts, confer health benefits to the host. The use of probiotics in poultry has increased steadily over the years due to higher demand for antibiotic-free poultry. The objective of this systematic review is to present and evaluate the effects of probiotics on the nutrient utilization, growth and laying performance, gut histomorphology, immunity, and gut microbiota of poultry. An electronic search was conducted using relevant keywords to include papers pertinent to the topic. Seventeen commonly used probiotic species were critically assessed for their roles in the performance and gut health of poultry under existing commercial production conditions. The results showed that probiotic supplementation could have the following effects: (1) modification of the intestinal microbiota, (2) stimulation of the immune system, (3) reduction in inflammatory reactions, (4) prevention of pathogen colonization, (5) enhancement of growth performance, (6) alteration of the ileal digestibility and total tract apparent digestibility coefficient, and (7) decrease in ammonia and urea excretion. Thus, probiotics can serve as a potential alternative to antibiotic growth promoters in poultry production. However, factors such as the intestinal health condition of birds, the probiotic inclusion level; and the incubation conditions, feedstuff, and water quality offered to birds may affect the outcome. This systematic review provides a summary of the use of probiotics in poultry production, as well as the potential role of probiotics in the nutrient utilization, growth and laying performance, and gut health of poultry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA