Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175400

RESUMO

We aimed to investigate whether molecular clues from the extracellular matrix (ECM) can induce oral epithelial differentiation of pluripotent stem cells. Mouse embryonic stem cells (ESC) of the feeder-independent cell line E14 were used as a model for pluripotent stem cells. They were first grown in 2D on various matrices in media containing vitamin C and without leukemia inhibitory factor (LIF). Matrices investigated were gelatin, laminin, and extracellular matrices (ECM) synthesized by primary normal oral fibroblasts and keratinocytes in culture. Differentiation into epithelial lineages was assessed by light microscopy, immunocytochemistry, and flow cytometry for cytokeratins and stem cell markers. ESC grown in 2D on various matrices were afterwards grown in 3D organotypic cultures with or without oral fibroblasts in the collagen matrix and examined histologically and by immunohistochemistry for epithelial (keratin pairs 1/10 and 4/13 to distinguish epidermal from oral epithelia and keratins 8,18,19 to phenotype simple epithelia) and mesenchymal (vimentin) phenotypes. ECM synthesized by either oral fibroblasts or keratinocytes was able to induce, in 2D cultures, the expression of cytokeratins of the stratified epithelial phenotype. When grown in 3D, all ESC developed into two morphologically distinct cell populations on collagen gels: (i) epithelial-like cells organized in islands with occasional cyst- or duct-like structures and (ii) spindle-shaped cells suggestive of mesenchymal differentiation. The 3D culture on oral fibroblast-populated collagen matrices was necessary for further differentiation into oral epithelia. Only ESC initially grown on 2D keratinocyte or fibroblast-synthesized matrices reached full epithelial maturation. In conclusion, ESC can generate oral epithelia under matrix instruction.


Assuntos
Colágeno , Queratinócitos , Animais , Camundongos , Queratinócitos/metabolismo , Epitélio/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Queratinas/metabolismo , Fibroblastos/metabolismo , Células Cultivadas
2.
Eur J Oral Sci ; 130(3): e12867, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452148

RESUMO

Oral epithelial differentiation is known to be directed by underlying fibroblasts, but the responsible factor(s) have not been identified. We aimed here to identify fibroblast-derived factors responsible for oral epithelial differentiation. Primary normal human oral keratinocytes and fibroblasts were isolated from healthy volunteers after informed consent (n = 5) and 3D-organotypic (3D-OT) cultures were constructed. Various growth factors were added at a range of 0.1-100 ng/ml. 3D-OTs were harvested after ten days and assessed histologically, by immunohistochemistry and the TUNEL method. Epithelium developed in 3D-OT without fibroblasts showed an undifferentiated phenotype. Addition of granulocyte macrophage-colony stimulating factor (GM-CSF) induced expression of cytokeratin 13 in suprabasal cell layers. Admixture of GM-CSF and keratinocyte growth factor (KGF) induced, in addition, polarization of epidermal growth factor (EGF) receptor and ß1-integrin to basal cell layer and collagen IV deposition. Terminal differentiation with polarization of TUNEL-positive cells to superficial layers occurred only in the presence of fibroblasts in collagen gels either in direct contact or at distance from normal oral keratinocytes. Taken together, these results show that major aspects of oral epithelial differentiation are regulated by the synergic combination of GM-CSF and KGF. However, the terminal stage seems to be controlled by other yet unidentified fibroblast-derived diffusible factor(s).


Assuntos
Fator 7 de Crescimento de Fibroblastos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Diferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Epitélio , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Granulócitos/metabolismo , Humanos , Queratinócitos , Macrófagos/metabolismo
3.
Cell Mol Life Sci ; 77(6): 1115-1133, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31270582

RESUMO

Cancers show a metabolic shift towards aerobic glycolysis. By "corrupting" their microenvironment, carcinoma cells are able to obtain energy substrates to "fuel" their mitochondrial metabolism and cell growth in an autophagy-associated, paracrine manner. However, the metabolic changes and role of normal fibroblasts in this process remain unclear. We devised a novel, indirect co-culture system to elucidate the mechanisms of metabolic coupling between stromal cells and oral squamous cell carcinoma (OSCC) cells. Here, we showed that normal oral fibroblasts (NOFs) and OSCC become metabolically coupled through several processes before acquiring an activated phenotype and without inducing senescence. We observed, for the first time, that NOFs export mitochondria towards OSCCs through both direct contact and via indirect mechanisms. NOFs are activated and are able to acquire a cancer-associated fibroblasts metabolic phenotype when co-cultivation with OSSC cells, by undergoing aerobic glycolysis, secreting more reactive oxygen species (ROS), high L-lactate and overexpressing lactate exporter MCT-4, leading to mitochondrial permeability transition pore (mPTP) opening, hypoxia, and mitophagy. On the other hand, Cav-1-low NOFs generate L-lactate to "fuel" mitochondrial metabolism and anabolic growth of OSCC. Most interestingly, the decrease in AMPK activity and PGC-1α expression might involve in regulation of ROS that functions to maintain final energy and metabolic homeostasis. This indicated, for the first time, the existence of ATP and ROS homeostasis during carcinogenesis. Our study suggests that an efficient therapeutical approach has to target the multiple mechanisms used by them to corrupt the normal surrounding stroma and metabolic homeostasis.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas/metabolismo , Fibroblastos/metabolismo , Glicólise , Neoplasias Bucais/metabolismo , Idoso , Animais , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Fibroblastos/patologia , Humanos , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias Bucais/patologia , Espécies Reativas de Oxigênio/metabolismo
4.
Odontology ; 107(3): 291-300, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30478679

RESUMO

The epithelial rests of Malassez (ERMs) might represent a valuable source of oral epithelial cells with stem cell properties. The purpose of this study was to isolate and characterize cells derived from human ERM, and compare them with cells derived from matched normal oral mucosa (NOM). Matched tissue specimens of the periodontal ligament of extracted tooth and NOM were collected. Cells were isolated in culture, then characterized by immunohistochemistry and flow cytometry for expression of pancytokeratin, ESA, PDGFRB, CD31 and CD44. 3D organotypic cultures were constructed by growing epithelial cells on top of fibroblast-populated collagen gels. Both ERM and NOM-isolated cells expressed the markers of epithelial lineage (ESA and pancytokeratin), and to some extent PDGFR, an indicator of a more mesenchymal phenotype, but not the endothelial cell marker CD31. Cells with epithelial morphology were isolated from periodontium of cervical, middle and apical parts of the root, but contained a significantly lower percentage of ESA and pancytokeratin-positive cells than when isolating cells from NOM (p < 0.001). ERM cells expressed a significantly higher percentage of the stem cell-related molecule CD44 (cervical 92.93 ± 0.25%, middle 93.8 ± 0.26%, apical 94.36 ± 0.41%) than cells isolated from NOM (27.8 ± 1.47%, p < 0.001). When grown in 3D organotypic cultures and in collagen gels, ERM cells formed a less differentiated epithelium than NOM cells, but expressing pancytokeratin and vimentin. In conclusion, epithelial cells could be isolated from human periodontium and grown in culture; their in vitro characterization indicates that they have a less differentiated phenotype compared with cells derived from normal oral epithelium.


Assuntos
Ligamento Periodontal , Descanso , Células Cultivadas , Células Epiteliais , Fibroblastos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA