Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(11): e2305307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926775

RESUMO

Herein, a facile strategy is illustrated to develop pyrolysis-free out-of-plane coordinated single atomic sites-based M-POP via a one-pot Friedel Craft acylation route followed by a post-synthetic metalation. The optimized geometry of the Co@BiPy-POP clearly reveals the presence of out-of-plane Co-single atomic sites in the porous backbone. This novel photopolymer Co@BiPy-POP shows extensive π-conjugations followed by impressive light harvesting ability and is utilized for photochemical CO2 fixation to value-added chemicals. A remarkable conversion of styrene epoxide (STE) to styrene carbonate (STC) (≈98%) is obtained under optimized photocatalytic conditions in the existence of promoter tert-butyl ammonium bromide (TBAB). Synchrotron-based X-ray adsorption spectroscopy (XAS) analysis reveals the single atom coordination sites along with the metal (Co) oxidation number of +2.16 in the porous network. Moreover, in situ diffuse reflectance spectroscopy (DRIFTS) and electron paramagnetic resonance (EPR) investigations provide valuable information on the evolution of key reaction intermediates. Comprehensivecomputational analysis also helps to understand the overall mechanistic pathway along with the interaction between the photocatalyst and reactants. Overall, this study presents a new concept of fabricating porous photopolymers based on a pyrolysis-free out-of-plane-coordination strategy and further explores the role of single atomic sites in carrying out feasible CO2 fixation reactions.

2.
Angew Chem Int Ed Engl ; 62(50): e202311304, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872849

RESUMO

Herein, we have specifically designed two metalated porous organic polymers (Zn-POP and Co-POP) for syngas (CO+H2 ) production from gaseous CO2 . The variable H2 /CO ratio of syngas with the highest efficiency was produced in water medium (without an organic hole scavenger and photosensitizer) by utilizing the basic principle of Lewis acid/base chemistry. Also, we observed the formation of entirely different major products during photocatalytic CO2 reduction and water splitting with the help of the two catalysts, where CO (145.65 µmol g-1 h-1 ) and H2 (434.7 µmol g-1 h-1 ) production were preferentially obtained over Co-POP & Zn-POP, respectively. The higher electron density/better Lewis basic nature of Co-POP was investigated further using XPS, XANES, and NH3 -TPD studies, which considerably improve CO2 activation capacity. Moreover, the structure-activity relationship was confirmed via in situ DRIFTS and DFT studies, which demonstrated the formation of COOH* intermediate along with the thermodynamic feasibility of CO2 reduction over Co-POP while water splitting occurred preferentially over Zn-POP.

3.
J Am Chem Soc ; 145(43): 23802-23813, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870913

RESUMO

The conversion of CO2 to a sole carbonaceous product using photocatalysis is a sustainable solution for alleviating the increasing levels of CO2 emissions and reducing our dependence on nonrenewable resources such as fossil fuels. However, developing a photoactive, metal-free catalyst that is highly selective and efficient in the CO2 reduction reaction (CO2RR) without the need for sacrificial agents, cocatalysts, and photosensitizers is challenging. Furthermore, due to the poor solubility of CO2 in water and the kinetically and thermodynamically favored hydrogen evolution reaction (HER), designing a highly selective photocatalyst is challenging. Here, we propose a molecular engineering approach to design a photoactive polymer with high CO2 permeability and low water diffusivity, promoting the mass transfer of CO2 while suppressing HER. We have incorporated a contorted triptycene scaffold with "internal molecular free volume (IMFV)" to enhance gas permeability to the active site by creating molecular channels through the inefficient packing of polymer chains. Additionally, we introduced a pyrene moiety to promote visible-light harvesting capability and charge separation. By leveraging these qualities, the polymer exhibited a high CO generation rate of 77.8 µmol g-1 h-1, with a high selectivity of ∼98% and good recyclability. The importance of IMFV was highlighted by replacing the contorted triptycene unit with a planar scaffold, which led to a selectivity reversal favoring HER over CO2RR in water. In situ electron paramagnetic resonance (EPR), time-resolved photoluminescence spectroscopy (TRPL), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) techniques, further supported by theoretical calculations, were employed to enlighten the mechanistic insight for metal-free CO2 reduction to exclusively CO in water.

4.
J Am Chem Soc ; 145(1): 422-435, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36537351

RESUMO

The development of an efficient photocatalyst for C2 product formation from CO2 is of urgent importance toward the deployment of solar-fuel production. Here, we report a template-free, cost-effective synthetic strategy to develop a carbazole-derived porous organic polymer (POP)-based composite catalyst. The composite catalyst is comprised of In2.77S4 and porous organic polymer (POP) and is held together by induced-polarity-driven electrostatic interaction. Utilizing the synergy of the catalytically active In centers and light-harvesting POPs, the catalyst showed 98.9% selectivity toward the generation of C2H4, with a formation rate of 67.65 µmol g-1 h-1. Two different oxidation states of the In2.77S4 spinel were exploited for the C-C coupling process, and this was investigated by X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and density functional theory (DFT) calculations. The role of POP was elucidated via several photophysical and photoelectrochemical studies. The electron transfer was mapped by several correlated approaches, which assisted in establishing the Z-scheme mechanism. Furthermore, the mechanism of C2H4 formation was extensively investigated using density functional theory (DFT) calculations from multiple possible pathways.

5.
Angew Chem Int Ed Engl ; 62(9): e202216613, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537874

RESUMO

We present surface reconstruction-induced C-C coupling whereby CO2 is converted into ethylene. The wurtzite phase of CuGaS2. undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO2 to ethylene (C2 H4 ). Upon illumination, the catalyst efficiently converts CO2 to C2 H4 with 75.1 % selectivity (92.7 % selectivity in terms of Relectron ) and a 20.6 µmol g-1 h-1 evolution rate. Subsequent spectroscopic and microscopic studies supported by theoretical analysis revealed operando-generated Cu2+ , with the assistance of existing Cu+ , functioning as an anchor for the generated *CO and thereby facilitating C-C coupling. This study demonstrates strain-induced in situ surface reconstruction leading to heterojunction formation, which finetunes the oxidation state of Cu and modulates the CO2 reduction reaction pathway to selective formation of ethylene.

6.
Adv Mater ; 35(5): e2205994, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36469557

RESUMO

Obtaining multi-carbon products via CO2  photoreduction is a major catalytic challenge involving multielectron-mediated CC bond formation. Complex design of multicomponent interfaces that are exploited to achieve this chemical transformation, often leads to untraceable deleterious changes in the interfacial chemical environment affecting CO2  conversion efficiency and product selectivity. Alternatively, robust metal centers having asymmetric charge distribution can effectuate CC coupling reaction through the stabilization of intermediates, for desired product selectivity. However, generating inherent charge distribution in a single component catalyst is a difficult material design challenge. Here, a novel photocatalyst, Bi19 S27 Cl3 , is presented which selectively converts CO2  to a C2  product, ethanol, in high yield under visible light irradiation. Structural analysis through transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy reveals the presence of charge polarized bismuth centers in Bi19 S27 Cl3 . The intrinsic electric field induced by charge polarized bismuth centers renders better separation efficiency of photogenerated electron-hole pair. Furthermore, charge polarized centers yield better adsorption of CO* intermediate and accelerate the rate determining CC coupling step through the formation of OCCOH intermediate. Formation of these intermediates is experimentally mapped by in situ Fourier-transform infrared spectroscopy and further confirmed by theoretical calculation.

7.
Adv Mater ; 34(30): e2202294, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35609013

RESUMO

The discovery of novel materials for industrial-standard hydrogen production is the present need considering the global energy infrastructure. A novel electrocatalyst, Pt3 Ge, which is engineered with a desired crystallographic facet (202), accelerates hydrogen production by water electrolysis, and records industrially desired operational stability compared to the commercial catalyst platinum is introduced. Pt3 Ge-(202) exhibits low overpotential of 21.7 mV (24.6 mV for Pt/C) and 92 mV for 10 and 200 mA cm-2 current density, respectively in 0.5 m H2 SO4 . It also exhibits remarkable stability of 15 000 accelerated degradation tests cycles (5000 for Pt/C) and exceptional durability of 500 h (@10 mA cm-2 ) in acidic media. Pt3 Ge-(202) also displays low overpotential of 96 mV for 10 mA cm-2 current density in the alkaline medium, rationalizing its hydrogen production ability over a wide pH range required commercial operations. Long-term durability (>75 h in alkaline media) with the industrial level current density (>500 mA cm-2 ) has been demonstrated by utilizing the electrochemical flow reactor. The driving force behind this stupendous performance of Pt3 Ge-(202) has been envisaged by mapping the reaction mechanism, active sites, and charge-transfer kinetics via controlled electrochemical experiments, ex situ X-ray photoelectron spectroscopy, in situ infrared spectroscopy, and in situ X-ray absorption spectroscopy further corroborated by first principles calculations.

8.
Chem Commun (Camb) ; 58(46): 6638-6641, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588261

RESUMO

Fast photogenerated charge recombination and inappropriate bandgap for visible light driven charge generation hinders the performance of TiO2. In this study, TiO2 was activated for visible light driven CO2 reduction in the presence of Bi2MoO6 as an electron donor. Furthermore, the introduction of oxygen vacancies resulted in enhanced CO2 adsorption and conversion. The best catalyst gives 27.1 µmol g-1 h-1 methanol formation. DRIFTS was used to explain the methanol formation mechanism on oxygen deficient TiO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA