RESUMO
Objectives: Risk assessment models for cardiac surgery do not distinguish between degrees of liver dysfunction. We have previously shown that preoperative liver stiffness is associated with hospital length of stay following cardiac surgery. The authors hypothesized that a liver stiffness measurement (LSM) ≥ 9.5 kPa would rule out a short hospital length of stay (LOS < 6 days) following isolated coronary artery bypass grafting (CABG) surgery. Methods: A prospective observational study of one hundred sixty-four adult patients undergoing non-emergent isolated CABG surgery at a single university hospital center. Preoperative liver stiffness measured by ultrasound elastography was obtained for each participant. Multivariate logistic regression models were used to assess the adjusted relationship between LSM and a short hospital stay. Results: We performed multivariate logistic regression models using short hospital LOS (<6 days) as the dependent variable. Independent variables included LSM (< 9.5 kPa, ≥ 9.5 kPa), age, sex, STS predicted morbidity and mortality, and baseline hemoglobin. After adjusting for included variables, LSM ≥ 9.5 kPa was associated with lower odds of early discharge as compared to LSM < 9.5 kPa (OR: 0.22, 95% CI: 0.06-0.84, p = 0.03). The ROC curve and resulting AUC of 0.76 (95% CI: 0.68-0.83) suggest the final multivariate model provides good discriminatory performance when predicting early discharge. Conclusions: A preoperative LSM ≥ 9.5 kPa ruled out a short length of stay in nearly 80% of patients when compared to patients with a LSM < 9.5 kPa. Preoperative liver stiffness may be a useful metric to incorporate into preoperative risk stratification.
RESUMO
Obesity-induced cardiac dysfunction is growing at an alarming rate, showing a dramatic increase in global prevalence. Mitochondrial translocation of miR-181c in cardiomyocytes results in excessive reactive oxygen species (ROS) production during obesity. ROS causes Sp1, a transcription factor for MICU1, to be degraded via post-translational modification. The subsequent decrease in MICU1 expression causes mitochondrial Ca2+ accumulation, ultimately leading to a propensity for heart failure. Herein, we hypothesized that phosphorylation of Argonaute 2 (AGO2) at Ser 387 (in human) or Ser 388 (in mouse) inhibits the translocation of miR-181c into the mitochondria by increasing the cytoplasmic stability of the RNA-induced silencing complex (RISC). Initially, estrogen offers cardioprotection in pre-menopausal females against the consequences of mitochondrial miR-181c upregulation by driving the phosphorylation of AGO2. Neonatal mouse ventricular myocytes (NMVM) treated with insulin showed an increase in pAGO2 levels and a decrease in mitochondrial miR-181c expression by increasing the binding affinity of AGO2-GW182 in the RISC. Thus, insulin treatment prevented excessive ROS production and mitochondrial Ca2+ accumulation. In human cardiomyocytes, we overexpressed miR-181c to mimic pathological conditions, such as obesity/diabetes. Treatment with estradiol (E2) for 48 h significantly lowered miR-181c entry into the mitochondria through increased pAGO2 levels. E2 treatment also normalized Sp1 degradation and MICU1 transcription that normally occurs in response to miR-181c overexpression. We then investigated these findings using an in vivo model, with age-matched male, female and ovariectomized (OVX) female mice. Consistent with the E2 treatment, we show that female hearts express higher levels of pAGO2 and thus, exhibit higher association of AGO2-GW182 in cytoplasmic RISC. This results in lower expression of mitochondrial miR-181c in female hearts compared to male or OVX groups. Further, female hearts had fewer consequences of mitochondrial miR-181c expression, such as lower Sp1 degradation and significantly decreased MICU1 transcriptional regulation. Taken together, this study highlights a potential therapeutic target for conditions such as obesity and diabetes, where miR-181c is upregulated. NEW AND NOTEWORTHY: In this study, we show that the phosphorylation of Argonaute 2 (AGO2) stabilizes the RNA-induced silencing complex in the cytoplasm, preventing miR-181c entry into the mitochondria. Furthermore, we demonstrate that treatment with estradiol can inhibit the translocation of miR-181c into the mitochondria by phosphorylating AGO2. This ultimately eliminates the downstream consequences of miR-181c overexpression by mitigating excessive reactive oxygen species production and calcium entry into the mitochondria.
Assuntos
Proteínas Argonautas , MicroRNAs , Miócitos Cardíacos , Espécies Reativas de Oxigênio , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Feminino , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Masculino , Fosforilação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Cálcio/metabolismo , Fator de Transcrição Sp1/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Complexo de Inativação Induzido por RNA/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Caracteres SexuaisRESUMO
PURPOSE: Although significant improvements in assisted reproductive technology (ART) outcomes have been accomplished, a critical question remains: which embryo is most likely to result in a pregnancy? Embryo selection is currently based on morphological and genetic criteria; however, these criteria do not fully predict good-quality embryos and additional objective criteria are needed. The cumulus cells are critical for oocyte and embryo development. This systematic review assessed biomarkers in cumulus-oocyte complexes and their association with successful IVF outcomes. METHODS: A comprehensive search was conducted using PubMed, Embase, Scopus, and Web of Science from inception until November 2022. Only English-language publications were included. Inclusion criteria consisted of papers that evaluated genetic biomarkers associated with the cumulus cells (CCs) in humans and the following three outcomes of interest: oocyte quality, embryo quality, and clinical outcomes, including fertilization, implantation, pregnancy, and live birth rates. RESULTS: The search revealed 446 studies of which 42 met eligibility criteria. Nineteen studies correlated genetic and biochemical biomarkers in CCs with oocyte quality. A positive correlation was reported between oocyte quality and increased mRNA expression in CCs of genes encoding for calcium homeostasis (CAMK1D), glucose metabolism (PFKP), extracellular matrix (HAS2, VCAN), TGF-ß family (GDF9, BMP15), and prostaglandin synthesis (PTGS2). Nineteen studies correlated genetic and biochemical biomarkers in CCs with embryo quality. A positive correlation was reported between embryo quality and increased mRNA expression in CCs of genes encoding for extracellular matrix (HAS2), prostaglandin synthesis (PTGS2), steroidogenesis (GREM1), and decreased expression of gene encoding for hormone receptor (AMHR2). Twenty-two studies assessed genetic and biochemical biomarkers in CCs with clinical outcomes. Increased expression of genes encoding for extracellular matrix (VCAN), and TGF-ß family (GDF9, BMP15) were positively correlated with pregnancy rate. CONCLUSION: Genetic biomarkers from cumulus cells were associated with oocyte quality (CAMK1D, PFKP, HAS2, VCAN, GDF-9, BMP-15, PTGS2), embryo quality (GREM1, PTGS2, HAS2), and pregnancy rate (GDF9, BMP15, VCAN). These results might help guide future studies directed at tests of cumulus cells to devise objective criteria to predict IVF outcomes.
Assuntos
Células do Cúmulo , Oócitos , Gravidez , Feminino , Humanos , Células do Cúmulo/metabolismo , Ciclo-Oxigenase 2/genética , Oócitos/metabolismo , Fertilização in vitro , Técnicas de Reprodução Assistida , Marcadores Genéticos/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/genética , Prostaglandinas/metabolismoRESUMO
Background The identification of large-artery stiffness as a major, independent risk factor for cardiovascular disease-associated morbidity and death has focused attention on identifying therapeutic strategies to combat this disorder. Genetic manipulations that delete or inactivate the translin/trax microRNA-degrading enzyme confer protection against aortic stiffness induced by chronic ingestion of high-salt water (4%NaCl in drinking water for 3 weeks) or associated with aging. Therefore, there is heightened interest in identifying interventions capable of inhibiting translin/trax RNase activity, as these may have therapeutic efficacy in large-artery stiffness. Methods and Results Activation of neuronal adenosine A2A receptors (A2ARs) triggers dissociation of trax from its C-terminus. As A2ARs are expressed by vascular smooth muscle cells (VSMCs), we investigated whether stimulation of A2AR on vascular smooth muscle cells promotes the association of translin with trax and, thereby increases translin/trax complex activity. We found that treatment of A7r5 cells with the A2AR agonist CGS21680 leads to increased association of trax with translin. Furthermore, this treatment decreases levels of pre-microRNA-181b, a target of translin/trax, and those of its downstream product, mature microRNA-181b. To check whether A2AR activation might contribute to high-salt water-induced aortic stiffening, we assessed the impact of daily treatment with the selective A2AR antagonist SCH58261 in this paradigm. We found that this treatment blocked aortic stiffening induced by high-salt water. Further, we confirmed that the age-associated decline in aortic pre-microRNA-181b/microRNA-181b levels observed in mice also occurs in humans. Conclusions These findings suggest that further studies are warranted to evaluate whether blockade of A2ARs may have therapeutic potential in treating large-artery stiffness.
Assuntos
MicroRNAs , Receptor A2A de Adenosina , Humanos , Camundongos , Animais , Receptor A2A de Adenosina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Transporte/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Aorta/metabolismo , Adenosina , Água/metabolismoRESUMO
Bortezomib has been successful for treatment of multiple myeloma, but not against solid tumors, and toxicities of neuropathy, thrombocytopenia and the emergence of resistance have triggered efforts to find alternative proteasome inhibitors. Bis-benzylidine piperidones such as RA190 covalently bind ADRM1/RPN13, a ubiquitin receptor that supports recognition of polyubiquitinated substrates of the proteasome and their subsequent deububiqutination and degradation. While these candidate RPN13 inhibitors (iRPN13) show promising anticancer activity in mouse models of cancer, they have suboptimal drug-like properties. Here we describe Up284, a novel candidate iRPN13 possessing a central spiro-carbon ring in place of RA190's problematic piperidone core. Cell lines derived from diverse cancer types (ovarian, triple negative breast, colon, cervical and prostate cancers, multiple myeloma and glioblastoma) were sensitive to Up284, including several lines resistant to bortezomib or cisplatin. Up284 and cisplatin showed synergistic cytotoxicity in vitro. Up284-induced cytotoxicity was associated with mitochondrial dysfunction, elevated levels of reactive oxygen species, accumulation of very high molecular weight polyubiquitinated protein aggregates, an unfolded protein response and the early onset of apoptosis. Up284 and RA190, but not bortezomib, enhanced antigen presentation in vitro. Up284 cleared from plasma in a few hours and accumulated in major organs by 24 h. A single dose of Up284, when administered to mice intra peritoneally or orally, inhibited proteasome function in both muscle and tumor for >48 h. Up284 was well tolerated by mice in repeat dose studies. Up284 demonstrated therapeutic activity in xenograft, syngeneic and genetically-engineered murine models of ovarian cancer.
Assuntos
Mieloma Múltiplo , Neoplasias Ovarianas , Humanos , Masculino , Feminino , Animais , Camundongos , Cisplatino , Complexo de Endopeptidases do Proteassoma , Bortezomib/farmacologia , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
Insulin resistance (IR) is one of the hallmarks of heart failure (HF). Abnormalities in skeletal muscle (SM) metabolism have been identified in patients with HF. However, the underlying mechanisms of IR development in SM in HF are poorly understood. Herein, we hypothesize that HF upregulates miR-133b in SM and in turn alters glucose metabolism and the propensity toward IR. Mitochondria isolated from SM of mice with HF induced by transverse aortic constriction (TAC) showed lower respiration and downregulation of muscle-specific components of the tricarboxylic acid (TCA) cycle, AMP deaminase 1 (AMPD1), and fumarate compared with those from control animals. RNA-Seq and subsequent qPCR validation confirmed upregulation of SM-specific microRNA (miRNA), miR-133b, in TAC versus sham animals. miR-133b overexpression alone resulted in significantly lower mitochondrial respiration, cellular glucose uptake, and glycolysis along with lower ATP production and cellular energy reserve compared with the scramble (Scr) in C2C12 cells. miR-133b binds to the 3'-untranslated region (UTR) of KLF15, the transcription factor for the insulin-sensitive glucose transporter, GLUT4. Overexpression of miR-133b lowers GLUT4 and lowers pAkt in presence of insulin in C2C12 cells. Finally, lowering miR-133b in primary skeletal myocytes isolated from TAC mice using antagomir-133b reversed the changes in KLF15, GLUT4, and AMPD1 compared with the scramble-transfected myocytes. Taken together, these data demonstrate a role for SM miR-133b in altered glucose metabolism in HF and suggest the therapeutic potential in HF to improve glucose uptake and glycolysis by restoring GLUT4 abundance. The data uncover a novel mechanism for IR and ultimately SM metabolic abnormalities in patients with HF.NEW & NOTEWORTHY Heart failure is associated with systemic insulin resistance and abnormalities in glucose metabolism but the underlying mechanisms are poorly understood. In the skeletal muscle, the major peripheral site of glucose utilization, we observe an increase in miR-133b in heart failure mice, which reduces the insulin-sensitive glucose transporter (GLUT4), glucose uptake, and metabolism in C2C12 and in myocytes. The antagomir for miR-133b restores GLUT4 protein and markers of metabolism in skeletal myocytes from heart failure mice demonstrating that miR-133b is an exciting target for systemic insulin resistance in heart failure and an important player in the cross talk between the heart and the periphery in the heart failure syndrome.
Assuntos
Insuficiência Cardíaca , Resistência à Insulina , MicroRNAs , Camundongos , Animais , Resistência à Insulina/genética , Antagomirs/metabolismo , Músculo Esquelético/metabolismo , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Insulina/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismoRESUMO
MicroRNAs (miRNAs) are epigenetic regulators that can target and inhibit translation of multiple mRNAs within a given cell type. As such, a number of different pathways and networks may be modulated as a result. In fact, miRNAs are known to regulate many cellular processes including differentiation, proliferation, inflammation, and metabolism. This review focuses on the miR-181 family and provides information from the published literature on the role of miR-181 homologs in regulating a range of activities in different cell types and tissues. Of note, we have not included details on miR-181 expression and function in the context of cancer since this is a broad topic area requiring independent review. Instead, we have focused on describing the function and mechanism of miR-181 family members on differentiation toward a number of cell lineages in various non-neoplastic conditions (e.g., immune/hematopoietic cells, osteoblasts, osteoclasts, chondrocytes, adipocytes). We have also provided information on how modulation of miR-181 homologs can have positive effects on disease states such as cardiac abnormalities, pulmonary arterial hypertension, thrombosis, osteoarthritis, and vascular inflammation. In this context, we have used some examples of FDA-approved drugs that modulate miR-181 expression. We conclude by discussing some common mechanisms by which miR-181 homologs appear to regulate a number of different cellular processes and how targeting specific miR-181 family members may lead to attractive therapeutic approaches to treat a number of human disease or repair conditions, including those associated with the aging process.
Assuntos
Diferenciação Celular , MicroRNAs , Humanos , Linhagem da Célula , Inflamação/metabolismo , Inflamação/patologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismoRESUMO
In this article, we consider the problem of change-point analysis for the count time series data through an integer-valued autoregressive process of order 1 (INAR(1)) with time-varying covariates. These types of features we observe in many real-life scenarios especially in the COVID-19 data sets, where the number of active cases over time starts falling and then again increases. In order to capture those features, we use Poisson INAR(1) process with a time-varying smoothing covariate. By using such model, we can model both the components in the active cases at time-point t namely, (i) number of nonrecovery cases from the previous time-point and (ii) number of new cases at time-point t. We study some theoretical properties of the proposed model along with forecasting. Some simulation studies are performed to study the effectiveness of the proposed method. Finally, we analyze two COVID-19 data sets and compare our proposed model with another PINAR(1) process which has time-varying covariate but no change-point, to demonstrate the overall performance of our proposed model.
RESUMO
We recently identified a nuclear-encoded miRNA (miR-181c) in cardiomyocytes that can translocate into mitochondria to regulate mitochondrial gene mt-COX1 and influence obesity-induced cardiac dysfunction through the mitochondrial pathway. Because liver plays a pivotal role during obesity, we hypothesized that miR-181c might contribute to the pathophysiological complications associated with obesity. Therefore, we used miR-181c/d-/- mice to study the role of miR-181c in hepatocyte lipogenesis during diet-induced obesity. The mice were fed a high-fat (HF) diet for 26 weeks, during which indirect calorimetric measurements were made. Quantitative PCR (qPCR) was used to examine the expression of genes involved in lipid synthesis. We found that miR-181c/d-/- mice were not protected against all metabolic consequences of HF exposure. After 26 weeks, the miR-181c/d-/- mice had a significantly higher body fat percentage than did wild-type (WT) mice. Glucose tolerance tests showed hyperinsulinemia and hyperglycemia, indicative of insulin insensitivity in the miR-181c/d-/- mice. miR-181c/d-/- mice fed the HF diet had higher serum and liver triglyceride levels than did WT mice fed the same diet. qPCR data showed that several genes regulated by isocitrate dehydrogenase 1 (IDH1) were more upregulated in miR-181c/d-/- liver than in WT liver. Furthermore, miR-181c delivered in vivo via adeno-associated virus attenuated the lipogenesis by downregulating these same lipid synthesis genes in the liver. In hepatocytes, miR-181c regulates lipid biosynthesis by targeting IDH1. Taken together, the data indicate that overexpression of miR-181c can be beneficial for various lipid metabolism disorders.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Lipogênese , Fígado/metabolismo , MicroRNAs/metabolismo , Obesidade , Triglicerídeos , Animais , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Triglicerídeos/biossíntese , Triglicerídeos/genéticaRESUMO
Bortezomib and the other licensed 20S proteasome inhibitors show robust activity against liquid tumors like multiple myeloma, but have disappointed against solid tumors including ovarian cancer. Consequently, interest is mounting in alternative non-peptide based drugs targeting the proteasome's 19S regulatory particle subunit, including its ubiquitin receptor RPN13. RA183 and RA375 are more potent analogs of the prototypic inhibitor of RPN13 (iRPN13) called RA190, and they show promise for the treatment of ovarian cancer. Here we demonstrate that rendering these candidate RPN13 inhibitors chiral and asymmetric through the addition of a single methyl to the core piperidone moiety increases their potency against cancer cell lines, with the S-isomer being more active than the R-isomer. The enhanced cancer cell cytotoxicities of these compounds are associated with improved binding to RPN13 in cell lysates, ATP depletion by inhibition of glycolysis and mitochondrial electron chain transport, mitochondrial depolarization and perinuclear clustering, oxidative stress and glutathione depletion, and rapid accumulation of high molecular weight polyubiquitinated proteins with a consequent unresolved ubiquitin proteasome system (UPS) stress response. Cytotoxicity was associated with an early biomarker of apoptosis, increased surface annexin V binding. As for cisplatin, BRCA2 and ATM deficiency conferred increased sensitivity to these iRPN13s. Ubiquitination plays an important role in coordinating DNA damage repair and the iRPN13s may compromise this process by depletion of monomeric ubiquitin following its sequestration in high molecular weight polyubiquitinated protein aggregates. Indeed, a synergistic cytotoxic response was evident upon treatment of several ovarian cancer cell lines with either cisplatin or doxorubicin and our new candidate iRPN13s, suggesting that such a combination approach warrants further exploration for the treatment of ovarian cancer.
Assuntos
Antineoplásicos , Compostos de Benzilideno , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/química , Compostos de Benzilideno/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Ubiquitinação/efeitos dos fármacosRESUMO
[Figure: see text].
Assuntos
Aorta/metabolismo , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Rigidez Vascular/fisiologia , Animais , Aorta/efeitos dos fármacos , Arginina Vasopressina/farmacologia , Proteínas de Ligação a DNA/genética , Camundongos , MicroRNAs/genética , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Rigidez Vascular/efeitos dos fármacosRESUMO
AIMS: In cardiomyocytes, there is microRNA (miR) in the mitochondria that originates from the nuclear genome and matures in the cytoplasm before translocating into the mitochondria. Overexpression of one such miR, miR-181c, can lead to heart failure by stimulating reactive oxygen species (ROS) production and increasing mitochondrial calcium level ([Ca2+]m). Mitochondrial calcium uptake 1 protein (MICU1), a regulatory protein in the mitochondrial calcium uniporter complex, plays an important role in regulating [Ca2+]m. Obesity results in miR-181c overexpression and a decrease in MICU1. We hypothesize that lowering miR-181c would protect against obesity-induced cardiac dysfunction. METHODS AND RESULTS: We used an in vivo mouse model of high-fat diet (HFD) for 18 weeks and induced high lipid load in H9c2 cells with oleate-conjugated bovine serum albumin in vitro. We tested the cardioprotective role of lowering miR-181c by using miR-181c/d-/- mice (in vivo) and AntagomiR against miR-181c (in vitro). HFD significantly upregulated heart levels of miR-181c and led to cardiac hypertrophy in wild-type mice, but not in miR-181c/d-/- mice. HFD also increased ROS production and pyruvate dehydrogenase activity (a surrogate for [Ca2+]m), but the increases were alleviated in miR-181c/d-/- mice. Moreover, miR-181c/d-/- mice fed a HFD had higher levels of MICU1 than did wild-type mice fed a HFD, attenuating the rise in [Ca2+]m. Overexpression of miR-181c in neonatal ventricular cardiomyocytes (NMVM) caused increased ROS production, which oxidized transcription factor Sp1 and led to a loss of Sp1, thereby slowing MICU1 transcription. Hence, miR-181c increases [Ca2+]m through Sp1 oxidation and downregulation of MICU1, suggesting that the cardioprotective effect of miR-181c/d-/- results from inhibition of Sp1 oxidation. CONCLUSION: This study has identified a unique nuclear-mitochondrial communication mechanism in the heart orchestrated by miR-181c. Obesity-induced overexpression of miR-181c increases [Ca2+]m via downregulation of MICU1 and leads to cardiac injury. A strategy to inhibit miR-181c in cardiomyocytes can preserve cardiac function during obesity by improving mitochondrial function. Altering miR-181c expression may provide a pharmacologic approach to improve cardiomyopathy in individuals with obesity/type 2 diabetes.
Assuntos
Núcleo Celular/metabolismo , MicroRNAs/genética , Mitocôndrias Cardíacas/metabolismo , Obesidade/genética , Obesidade/metabolismo , Disfunção Ventricular/etiologia , Disfunção Ventricular/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Miócitos Cardíacos/metabolismo , Obesidade/complicações , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição Sp1/metabolismo , Disfunção Ventricular/fisiopatologiaRESUMO
We sought to design ubiquitin-proteasome system inhibitors active against solid cancers by targeting ubiquitin receptor RPN13 within the proteasome's 19S regulatory particle. The prototypic bis-benzylidine piperidone-based inhibitor RA190 is a michael acceptor that adducts Cysteine 88 of RPN13. In probing the pharmacophore, we showed the benefit of the central nitrogen-bearing piperidone ring moiety compared to a cyclohexanone, the importance of the span of the aromatic wings from the central enone-piperidone ring, the contribution of both wings, and that substituents with stronger electron withdrawing groups were more cytotoxic. Potency was further enhanced by coupling of a second warhead to the central nitrogen-bearing piperidone as RA375 exhibited ten-fold greater activity against cancer lines than RA190, reflecting its nitro ring substituents and the addition of a chloroacetamide warhead. Treatment with RA375 caused a rapid and profound accumulation of high molecular weight polyubiquitinated proteins and reduced intracellular glutathione levels, which produce endoplasmic reticulum and oxidative stress, and trigger apoptosis. RA375 was highly active against cell lines of multiple myeloma and diverse solid cancers, and demonstrated a wide therapeutic window against normal cells. For cervical and head and neck cancer cell lines, those associated with human papillomavirus were significantly more sensitive to RA375. While ARID1A-deficiency also enhanced sensitivity 4-fold, RA375 was active against all ovarian cancer cell lines tested. RA375 inhibited proteasome function in muscle for >72h after single i.p. administration to mice, and treatment reduced tumor burden and extended survival in mice carrying an orthotopic human xenograft derived from a clear cell ovarian carcinoma.
Assuntos
Antineoplásicos/farmacologia , Compostos de Benzilideno/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Compostos de Benzilideno/química , Compostos de Benzilideno/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Concentração Inibidora 50 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Estrutura Molecular , Neoplasias/genética , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/uso terapêutico , Ligação Proteica , Relação Estrutura-Atividade , Ubiquitina/antagonistas & inibidores , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Background Translocation of miR-181c into cardiac mitochondria downregulates the mitochondrial gene, mt-COX1. miR-181c/d-/- hearts experience less oxidative stress during ischemia/reperfusion (I/R) and are protected against I/R injury. Additionally, miR-181c overexpression can increase mitochondrial matrix Ca2+ ([Ca2+]m), but the mechanism by which miR-181c regulates [Ca2+]m is unknown. Methods and Results By RNA sequencing and analysis, here we show that hearts from miR-181c/d-/- mice overexpress nuclear-encoded Ca2+ regulatory and metabolic pathway genes, suggesting that alterations in miR-181c and mt-COX1 perturb mitochondria-to-nucleus retrograde signaling and [Ca2+]m regulation. Quantitative polymerase chain reaction validation of transcription factors that are known to initiate retrograde signaling revealed significantly higher Sp1 (specificity protein) expression in the miR-181c/d-/- hearts. Furthermore, an association of Sp1 with the promoter region of MICU1 was confirmed by chromatin immunoprecipitation-quantitative polymerase chain reaction and higher expression of MICU1 was found in the miR-181c/d-/- hearts. Conversely, downregulation of Sp1 by small interfering RNA decreased MICU1 expression in neonatal mouse ventricular myocytes. Changes in PDH activity provided evidence for a change in [Ca2+]m via the miR-181c/MICU1 axis. Moreover, this mechanism was implicated in the pathology of I/R injury. When MICU1 was knocked down in the miR-181c/d-/- heart by lentiviral expression of a short-hairpin RNA against MICU1, cardioprotective effects against I/R injury were abrogated. Furthermore, using an in vitro I/R model in miR-181c/d-/- neonatal mouse ventricular myocytes, we confirmed the contribution of both Sp1 and MICU1 in ischemic injury. Conclusions miR-181c regulates mt-COX1, which in turn regulates MICU1 expression through the Sp1-mediated mitochondria-to-nucleus retrograde pathway. Loss of miR-181c can protect the heart from I/R injury by modulating [Ca2+]m through the upregulation of MICU1.
Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Cálcio/metabolismo , MicroRNAs/fisiologia , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Extracellular vesicles (EVs) play a role in the pathophysiological processes and in different diseases, including cardiovascular disease. Out of several categories of EVs, exosomes (smallest - 30 to 150â¯nm) are gaining most of the focus as the next generation of biomarkers and in therapeutic strategies. This is because exosomes can be differentiated from other types of EVs based on the expression of tetraspanin molecules on the surface. More importantly, exosomes can be traced back to the cell of origin by identifying the unique cellular marker(s) on the exosomal surface. Recently, several researchs have demonstrated an important and underappreciated mechanism of paracrine cell-cell communication involving exosomal transfer, and its subsequent functional impact on recipient cells. Exosomes are enriched in proteins, mRNAs, miRNAs, and other non-coding RNAs, which can potentially alter myocardial function. Additionally, different stages of tissue damage can also be identified by measuring these bioactive molecules in the circulation. There are several aspects of this new concept still unknown. Therefore, in this review, we have summarized the knowledge we have so far and highlighted the potential of this novel concept of next generation biomarkers and therapeutic intervention.
Assuntos
Sistema Cardiovascular/metabolismo , Exossomos/metabolismo , RNA não Traduzido/genética , Animais , Biomarcadores/metabolismo , Doenças Cardiovasculares/genética , Sistema Cardiovascular/fisiopatologia , Humanos , RNA não Traduzido/metabolismoRESUMO
Vascular stiffness plays a key role in the pathogenesis of hypertension. Recent studies indicate that the age-associated reduction in miR-181b levels in vascular smooth muscle cells (VSMCs) contributes to increased vascular stiffness. As these findings suggest that inhibiting degradation of miR-181b might prevent vascular stiffening, we have assessed whether the microRNA-degrading translin/trax (TN/TX) complex mediates degradation of miR-181b in the aorta.We found that TN-/- mice display elevated levels of miR-181b expression in the aorta. Therefore, we tested whether TN deletion prevents vascular stiffening in a mouse model of hypertension, induced by chronic high-salt intake (4%NaCl in drinking water for 3 wk; HSW). TN-/- mice subjected to HSW stress do not show increased vascular stiffness, as monitored by pulse wave velocity and tensile testing. The protective effect of TN deletion in the HSW paradigm appears to be mediated by its ability to increase miR-181b in the aorta since HSW decreases levels of miR-181b in WT mice, but not in TN KO mice. We demonstrate for the first time that interfering with microRNA degradation can have a beneficial impact on the vascular system and identify the microRNA-degrading TN/TX RNase complex as a potential therapeutic target in combatting vascular stiffness.NEW & NOTEWORTHY While the biogenesis and mechanism of action of mature microRNA are well understood, much less is known about the regulation of microRNA via degradation. Recent studies have identified the protein complex, translin(TN)/trax(TX), as a microRNA-degrading enzyme. Here, we demonstrate that TN/TX is expressed in vascular smooth muscle cells. Additionally, deletion of the TN/TX complex selectively increases aortic miR-181b and prevents increased vascular stiffness caused by ingestion of high-salt water. To our knowledge, this is first report describing the role of a microRNA RNAse in cardiovascular biology or pathobiology.
Assuntos
Aorta/enzimologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Hipertensão/enzimologia , MicroRNAs/metabolismo , Rigidez Vascular , Animais , Aorta/fisiopatologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Deleção de Genes , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Cloreto de Sódio na Dieta , Regulação para CimaRESUMO
Cancer-associated mutations in the spliceosome gene SF3B1 create a neomorphic protein that produces aberrant mRNA splicing in hundreds of genes, but the ensuing biologic and therapeutic consequences of this missplicing are not well understood. Here we have provided evidence that aberrant splicing by mutant SF3B1 altered the transcriptome, proteome, and metabolome of human cells, leading to missplicing-associated downregulation of metabolic genes, decreased mitochondrial respiration, and suppression of the serine synthesis pathway. We also found that mutant SF3B1 induces vulnerability to deprivation of the nonessential amino acid serine, which was mediated by missplicing-associated downregulation of the serine synthesis pathway enzyme PHGDH. This vulnerability was manifest both in vitro and in vivo, as dietary restriction of serine and glycine in mice was able to inhibit the growth of SF3B1MUT xenografts. These findings describe a role for SF3B1 mutations in altered energy metabolism, and they offer a new therapeutic strategy against SF3B1MUT cancers.
Assuntos
Reprogramação Celular , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias , Fosfoproteínas , Proteoma/metabolismo , Fatores de Processamento de RNA , Serina , Transcriptoma , Animais , Linhagem Celular Tumoral , Metabolismo Energético/genética , Glicina , Humanos , Camundongos , Proteínas de Neoplasias/genética , Neoplasias/dietoterapia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteoma/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Background: Hypertrophic cardiomyopathy (HCM) is characterized by myocyte hypertrophy and fibrosis. Studies in two mouse models (R92W-TnT/R403Q-MyHC) at early HCM stage revealed upregulation of endothelin (ET1) signaling in both mutants, but TGFß signaling only in TnT mutants. Dysregulation of miR-29 expression has been implicated in cardiac fibrosis. But it is unknown whether expression of miR-29a/b/c and profibrotic genes is commonly regulated in mouse and human HCM. Methods: In order to understand mechanisms underlying fibrosis in HCM, and examine similarities/differences in expression of miR-29a/b/c and several profibrotic genes in mouse and human HCM, we performed parallel studies in rat cardiac myocyte/fibroblast cultures, examined gene expression in two mouse models of (non-obstructive) HCM (R92W-TnT, R403Q-MyHC)/controls at early (5 weeks) and established (24 weeks) disease stage, and analyzed publicly available mRNA/miRNA expression data from obstructive-HCM patients undergoing septal myectomy/controls (unused donor hearts). Results: Myocyte cultures: ET1 increased superoxide/H2O2, stimulated TGFß expression/secretion, and suppressed miR-29a expression in myocytes. The effect of ET1 on miR-29 and TGFß expression/secretion was antagonized by N-acetyl-cysteine, a reactive oxygen species scavenger. Fibroblast cultures: ET1 had no effect on pro-fibrotic gene expression in fibroblasts. TGFß1/TGFß2 suppressed miR-29a and increased collagen expression, which was abolished by miR-29a overexpression. Mouse and human HCM: Expression of miR-29a/b/c was lower, and TGFB1/collagen gene expression was higher in TnT mutant-LV at 5 and 24 weeks; no difference was observed in expression of these genes in MyHC mutant-LV and in human myectomy tissue. TGFB2 expression was higher in LV of both mutant mice and human myectomy tissue. ACE2, a negative regulator of the renin-angiotensin-aldosterone system, was the most upregulated transcript in human myectomy tissue. Pathway analysis predicted upregulation of the anti-hypertrophic/anti-fibrotic liver X receptor/retinoid X receptor (LXR/RXR) pathway only in human myectomy tissue. Conclusions: Our in vitro studies suggest that activation of ET1 signaling in cardiac myocytes increases reactive oxygen species and stimulates TGFß secretion, which downregulates miR-29a and increases collagen in fibroblasts, thus contributing to fibrosis. Our gene expression studies in mouse and human HCM reveal allele-specific differences in miR-29 family/profibrotic gene expression in mouse HCM, and activation of anti-hypertrophic/anti-fibrotic genes and pathways in human HCM.
RESUMO
Abnormal mitochondrial calcium ([Ca2+]m) handling and energy deficiency results in cellular dysfunction and cell death. Recent studies suggest that nuclear-encoded microRNAs (miRNA) are able to translocate in to the mitochondrial compartment, and modulate mitochondrial activities, including [Ca2+]m uptake. Apart from this subset of miRNAs, there are several miRNAs that have been reported to target genes that play a role in maintaining [Ca2+]m levels in the cytoplasm. It is imperative to validate miRNAs that alter [Ca2+]m handling, and thereby alter cellular fate. The focus of this review is to highlight the mitochondrial miRNAs (MitomiRs), and other cytosolic miRNAs that target mRNAs which play an important role in [Ca2+]m handling.