Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(7): 17226-17244, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36194330

RESUMO

Here, silica sand-supported heterojunction composite of nano zinc oxide (nZnO) and graphene oxide nanosheet (nZnO-GO@SS) was prepared, and its potential as an efficient photocatalyst for the degradation of methylene blue (MB) and Rhodamine-B (Rh-B) under sunlight was demonstrated. Transmission electron microscopy confirmed the uniform distribution of spherically shaped nZnO of average size of approximately 8 nm over graphene oxide nanosheet (GO) in the composites. Photodegradation yields of 95.3% and 97.5% for 100 ppm of MB and Rh-B dye within 150 and 220 min, respectively, were achieved under sunlight by the prepared nanocatalyst (nZnO-GO), while sand microparticle-supported nanocatalyst (nZnO-GO@SS) demonstrated faster degradation of MB and Rh-B, i.e., within 120 and 160 min, respectively. Furthermore, when the recyclability of the photocatalyst was studied, the nZnO-GO exhibited more than 80% degradation efficiency after five cycles for both the dyes and nZnO-GO@SS demonstrated 10% higher (~90%) removal capability after five cycles of reuse. Furthermore, the antibacterial assay showed complete inactivation of Escherichia coli and Staphylococcus aureus bacterial strain by nZnO-GO@SS. Hence, our proposed strategy for the removal of toxic dyes from the aquatic environment under sunlight proved that sand microparticle-supported nanocatalyst (nZnO-GO@SS) might be a superior, cost-effective, and suitable photocatalytic system for industrial applications toward toxic dye removal and decontamination from industrial wastewater.


Assuntos
Óxido de Zinco , Óxido de Zinco/farmacologia , Luz Solar , Dióxido de Silício , Areia , Compostos Azo , Antibacterianos/farmacologia , Corantes
2.
Environ Sci Pollut Res Int ; 29(26): 40226-40240, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35119635

RESUMO

Here, conjugate of nano-graphene oxide (GO) and titanium dioxide nanoparticle (nTiO2) was proposed for the photocatalytic degradation of two toxic azo dyes, Congo red (CR) and Methylene blue (MB), under sunlight irradiation. Furthermore, the optimized weight ratio between GO and nTiO2 of 1:5 demonstrated the highest degradation efficiency. The nanoconjugate induced 85% degradation of 40 ppm of CR in 60 min and a complete degradation within 70 min, while it degraded more than 90% of 20 ppm of MB in 80 min. The photocatalyst can be reused for five cycles of photocatalysis. Thus, the photocatalytic potential of GO/nTiO2 under visible light may be used as a very suitable and cost-effective photocatalyst industrially for the removal of toxic dyes from water.


Assuntos
Compostos Azo , Nanopartículas , Catálise , Azul de Metileno , Luz Solar , Titânio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA