Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Org Biomol Chem ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301682

RESUMO

An efficient, eco-friendly, and scalable protocol has been introduced for the p-selective C-X (X = Se/S) bond formation of phenols employing earth-abundant, less-toxic Fe(III)-catalysts and the green solvent ethanol without using any directing template, stabilizing ligands, oxidants, or additives. The key attraction lies in the impressive p-selectivity with moderate to good yields, wide functional group compatibility under mild aerobic reaction conditions, and the synthetic modification of the products towards value-added molecules.

2.
Chemosphere ; 364: 143023, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117086

RESUMO

Petroleum hydrocarbon contamination is a serious hazard to marine environments, affecting ecosystems and marine life. However, extracellular polymeric substances (EPS) of marine bacteria constituting various hydrophilic and hydrophobic functional groups sequester petroleum hydrocarbons (PHs). In this study, interaction of EPS of Pseudomonas furukawaii PPS-19 with PHs such as crude oil, n-dodecane, and pyrene and its impact on PHs adsorption was investigated. Protein component of EPS was increased after treatment with PHs. Red shift of UV-Vis spectra implied change in molecular structure of EPS. Functional groups of proteins (CO, NH2) and polysaccharides (C-C, C-OH, C-O-C) predominantly interacted with PHs. Interaction with PHs affected secondary structure of EPS. Change in binding energies of corresponding functionalities of C 1s, O 1s, and N 1s confirmed the interaction. Disruption of crystalline peaks led to increased pore size in EPS primarily due to the increase in surface electronegativity. Static quenching mechanism unveils formation of complex between fulvic acid of EPS and PHs. Relative expression of alg8 gene was significantly increased in the presence of n-dodecane (6.31 fold) (P < 0.05; One way ANOVA). n-dodecane and pyrene adsorption capacity of Immobilized EPS was significantly higher (356.5 and 338.2 mg g-1, respectively) (P < 0.001; One way ANOVA) than control. Adsorption rate fits into the pseudo-second-order kinetic model. This study establishes that interaction of PHs causes structural and physical changes in EPS and EPS could be used as an adsorbent material for the sequestration of PHs pollution.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Hidrocarbonetos , Petróleo , Pseudomonas , Petróleo/metabolismo , Adsorção , Pseudomonas/metabolismo , Hidrocarbonetos/metabolismo , Hidrocarbonetos/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Pirenos/metabolismo , Pirenos/química , Alcanos/metabolismo , Alcanos/química
3.
Biochem Biophys Res Commun ; 736: 150501, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39116681

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) is an obligatory process in sarcoma. Despite that, the metabolic programming of sarcoma mitochondria is still unknown. To obtain a comprehensive metabolic insight of mitochondria, we developed a mouse fibrosarcoma model by injecting 3-methylcholanthrene and compared mitochondrial proteomes between sarcoma and its contralateral normal muscle using mass spectrometry. Our study identified ∼449 proteins listed in the SwissProt databases, and all the data sets are available via ProteomeXchange with the identifier PXD044903. In sarcoma, 49 mitochondrial proteins were found differentially expressed, including 36 proteins up-regulated and 13 proteins down-regulated, with the significance of p-value <0.05 and the log2[fold change] > 1 and < -1 as compared to normal muscle. Our data revealed that various anaplerotic reactions actively replenish the TCA cycle in sarcoma. The comparative expression profile and Western blotting analysis of OXPHOS subunits showed that complex-IV subunits, MT-CO3 and COX6A1, were significantly up-regulated in sarcoma vs. normal muscle. Further, biochemical and physiological assays confirmed enhanced complex-IV specific enzymatic and supercomplex activities with a concomitant increase of oxygen consumption rate in sarcoma mitochondria compared to normal muscle. Validation with human post-operative sarcoma tissues also confirms an increased MT-CO3 expression compared to normal tissue counterparts. Thus, our data comprehensively analyses the mitochondrial proteome and identifies augmented complex-IV assembly and activity in sarcoma.

4.
ACS Nano ; 18(34): 23310-23319, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39158149

RESUMO

Ferroelectric all-inorganic halide perovskite nanocrystals with both spontaneous polarization and visible light absorption are promising candidates for designing ferroelectric photovoltaic applications. It remains a challenge to realize ferroelectric photovoltaic devices with all-inorganic halide perovskites that can be operated in the absence of an external electric field. Here we report that a popular all-inorganic halide perovskite nanocrystal, CsPbBr3, exhibits a ferroelectricity-driven photovoltaic effect under visible light in the absence of an external electric field. Pristine CsPbBr3 nanocrystals exhibit intrinsic ferroelectric key properties with a notable saturated polarization of ∼0.15 µC/cm2 and a high Curie temperature of 462 K, driven by the stereochemical activity of the Pb(II) lone pair. Furthermore, application of an external electric field allows the photovoltaic effect to be enhanced and the spontaneous polarization to be switched with the direction of the electric field. CsPbBr3 nanocrystals exhibit a robust fatigue performance and a prolonged photoresponse under continuous illumination in the absence of an external electric field. These findings establish all-inorganic halide perovskite nanocrystals as potential candidates for designing photoferroelectric devices by coupling optical functionalities and ferroelectric responses.

5.
Crit Rev Biotechnol ; : 1-20, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009474

RESUMO

Increasing industrialization and urbanization have contributed to a significant rise in wastewater discharge and exerted extensive pressure on the existing natural energy resources. Microbial fuel cell (MFC) is a sustainable technology that utilizes wastewater for electricity generation. MFC comprises a bioelectrochemical system employing electroactive biofilms of several aerobic and anaerobic bacteria, such as Geobacter sulfurreducens, Shewanella oneidensis, Pseudomonas aeruginosa, and Ochrobacterum pseudiintermedium. Since the electroactive biofilms constitute a vital part of the MFC, it is crucial to understand the biofilm-mediated pollutant metabolism and electron transfer mechanisms. Engineering electroactive biofilm communities for improved biofilm formation and extracellular polymeric substances (EPS) secretion can positively impact the bioelectrochemical system and improve fuel cell performance. This review article summarizes the role of electroactive bacterial communities in MFC for wastewater treatment and bioelectricity generation. A significant focus has been laid on understanding the composition, structure, and function of electroactive biofilms in MFC. Various electron transport mechanisms, including direct electron transfer (DET), indirect electron transfer (IET), and long-distance electron transfer (LDET), have been discussed. A detailed summary of the optimization of process parameters and genetic engineering strategies for improving the performance of MFC has been provided. Lastly, the applications of MFC for wastewater treatment, bioelectricity generation, and biosensor development have been reviewed.

6.
Dalton Trans ; 53(30): 12773-12782, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39023184

RESUMO

In mitochondria, the detoxification of molar excess H2S as polysulfide proceeded via an oxidation process promoted by Cu/Zn containing superoxide dismutase (SOD1) enzyme, which has been very recently reported as the alternative enzyme for cytosolic H2S oxidation. Herein, we present Ni(II) complexes bearing the terminal SH group as a synthetic functional analogue for the sulfide oxidase function of SOD1. Synthesis, crystal structure and complete spectroscopic characterization of two sets of complexes, [NiLOMe/tBu(PPh3)] (2OMe/tBu) and tetraethyl salt of [NiLOMe/tBu(SH)]-1 (3OMe/tBu), were described (LOMe = (E)-2-methoxy-6-(((2-sulfidophenyl)imino)methyl)phenolate and LtBu = (E)-2,4-di-tert-butyl-6-(((2-sulfidophenyl)imino)methyl)phenolate). Under anaerobic conditions, 3OMe/tBu responded to a catalytic sulfur atom transfer (SAT) reaction with PPh3 to produce SPPh3. The SAT reaction was analyzed using detailed studies of 1H and 31P NMR spectra. Finally, the SAT reactivity pattern was compared with the same in the native enzyme of SOD1.


Assuntos
Complexos de Coordenação , Níquel , Enxofre , Níquel/química , Níquel/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/síntese química , Enxofre/química , Enxofre/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Modelos Moleculares , Catálise , Anaerobiose , Superóxido Dismutase/metabolismo , Superóxido Dismutase/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
7.
Chemosphere ; 356: 141913, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582164

RESUMO

Rubber wastewater contains variable low pH with a high load of nutrients such as nitrogen, phosphorous, suspended solids, high biological oxygen demand (BOD), and chemical oxygen demand (COD). Ureolytic and biofilm-forming bacterial strains Bacillus sp. OS26, Bacillus cereus OS36, Lysinibacillus macroides ST13, and Burkholderia multivorans DF12 were isolated from rubber processing centres showed high urease activity. Microscopic analyses evaluated the structural organization of biofilm. Extracellular polymeric substances (EPS) matrix of the biofilm of the strains showed the higher abundance of polysaccharides and lipids which help in the attachment and absorption of nutrients. The functional groups of polysaccharides, proteins, and lipids present in EPS were revealed by ATR-FTIR and 1H NMR. A consortium composed of B. cereus OS36, L. macroides ST13, and B. multivorans DF12 showed the highest biofilm formation, and efficiently reduced 62% NH3, 72% total nitrogen, and 66% PO43-. This consortium also reduced 76% BOD, 61% COD, and 68% TDS. After bioremediation, the pH of the remediated wastewater increased to 11.19. To reduce the alkalinity of discharged wastewater, CaCl2 and urea were added for calcite reaction. The highest CaCO3 precipitate was obtained at 24.6 mM of CaCl2, 2% urea, and 0.0852 mM of nickel (Ni2+) as a co-factor which reduced the pH to 7.4. The elemental composition of CaCO3 precipitate was analyzed by SEM-EDX. XRD analysis of the bacterially-induced precipitate revealed a crystallinity index of 0.66. The resulting CaCO3 precipitate was used as soil stabilizer. The precipitate filled the void spaces of the treated soil, reduced the permeability by 80 times, and increased the compression by 8.56 times than untreated soil. Thus, CaCO3 precipitated by ureolytic and biofilm-forming bacterial consortium through ureolysis can be considered a promising approach for neutralization of rubber wastewater and soil stabilization.


Assuntos
Biodegradação Ambiental , Biofilmes , Carbonato de Cálcio , Borracha , Águas Residuárias , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Solo/química , Bactérias/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Ureia/metabolismo , Urease/metabolismo
8.
Environ Res ; 252(Pt 1): 118774, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552827

RESUMO

Cellulose degrading bacterial diversity of Bhitarkanika mangrove ecosystem, India, was uncovered and the cellulose degradation mechanism in Bacillus haynesii DS7010 under the modifiers such as pH (pCO2), salinity and lead (Pb) was elucidated in the present study. The abundance of cellulose degrading heterotrophic bacteria was found to be higher in mangrove sediment than in water. The most potential strain, B. haynesii DS7010 showed the presence of endoglucanase, exoglucanase and ß-glucosidase with the maximum degradation recorded at 48 h of incubation, with 1% substrate concentration at 41 °C incubation temperature. Two glycoside hydrolase genes, celA and celB were confirmed in this bacterium. 3D structure prediction of the translated CelA and CelB proteins showed maximum similarities with glycoside hydrolase 48 (GH48) and glycoside hydrolase 5 (GH5) respectively. Native PAGE followed by zymogram assay unveiled the presence of eight isoforms of cellulase ranged from 78 kDa to 245 kDa. Among the stressors, most adverse effect was observed under Pb stress at 1400 ppm concentration, followed by pH at pH 4. This was indicated by prolonged lag phase growth, higher reactive oxygen species (ROS) production, lower enzyme activity and downregulation of celA and celB gene expressions. Salinity augmented bacterial metabolism up to 3% NaCl concentration. Mangrove leaf litter degradation by B. haynesii DS7010 indicated a substantial reduction in cellulolytic potential of the bacterium in response to the synergistic effect of the stressors. Microcosm set up with the stressors exhibited 0.97% decrease in total carbon (C%) and 0.02% increase in total nitrogen (N%) after 35 d of degradation while under natural conditions, the reduction in C and the increase in N were 4.05% and 0.2%, respectively. The findings of the study suggest the cellulose degradation mechanism of a mangrove bacterium and its resilience to the future consequences of environmental pollution and climate change.


Assuntos
Bacillus , Celulose , Bacillus/genética , Bacillus/metabolismo , Celulose/metabolismo , Índia , Áreas Alagadas , Salinidade , Biodegradação Ambiental , Chumbo/toxicidade , Chumbo/metabolismo , Concentração de Íons de Hidrogênio
9.
Int J Biol Macromol ; 266(Pt 1): 131266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556224

RESUMO

Bacteria thrive in biofilms embedding in the three-dimensional extracellular polymeric substances (EPS). Functional Amyloid in Pseudomonas (Fap), a protein in EPS, efficiently sequesters polycyclic aromatic hydrocarbons (PAHs). Present study reports the characterization of Fap fibrils from Pseudomonas aeruginosa PFL-P1 and describes the interaction with pyrene to assess the impact on pyrene degradation. Overexpression of fap in E. coli BL21(DE3) cells significantly enhances biofilm formation (p < 0.0001) and amyloid production (p = 0.0002), particularly with pyrene. Defibrillated Fap analysis reveals FapC monomers and increased fibrillation with pyrene. Circular Dichroism (CD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) unveil characteristic amyloid peaks and structural changes in Fap fibrils upon pyrene exposure. 3D-EEM analysis identifies a protein-like fluorophore in Fap fibrils, exhibiting pyrene-induced fluorescence quenching. Binding constants range from 5.23 to 7.78 M-1, with ΔG of -5.10 kJ mol-1 at 298 K, indicating spontaneous and exothermic interaction driven by hydrophobic forces. Exogenous Fap fibrils substantially increased the biofilm growth and pyrene degradation by P. aeruginosa PFL-P1 from 46 % to 64 % within 7 days (p = 0.0236). GC-MS identifies diverse metabolites, implying phthalic acid pathway in pyrene degradation. This study deepens insights into structural dynamics of Fap fibrils when exposed to pyrene, offering potential application in environmental bioremediation.


Assuntos
Amiloide , Biodegradação Ambiental , Biofilmes , Pseudomonas aeruginosa , Pirenos , Pirenos/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Amiloide/metabolismo , Amiloide/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Espectroscopia de Infravermelho com Transformada de Fourier
10.
J Hazard Mater ; 466: 133617, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306836

RESUMO

The adsorption behavior and interaction mechanisms of extracellular polymeric substances (EPS) of Pseudomonas aeruginosa OMCS-1 towards chromium (Cr), lead (Pb), and cadmium (Cd) were investigated. EPS-covered (EPS-C) cells exhibited significantly higher (p < 0.0001; two-way ANOVA) removal of Cr (85.58 ± 0.39%), Pb (81.98 ± 1.02%), and Cd (73.88 ± 1%) than EPS-removed (EPS-R) cells. Interactions between EPS-heavy metals were spontaneous (ΔG<0). EPS-Cr(VI) and EPS-Pb(II) binding were exothermic (ΔH<0), while EPS-Cd(II) binding was endothermic (ΔH>0) process. EPS bonded to Pb(II) via inner-sphere complexation by displacement of surrounding water molecules, while EPS-Cr(VI) and EPS-Cd(II) binding occurred through outer-sphere complexation via electrostatic interactions. Increased zeta potential of Cr (29.75%), Pb (41.46%), and Cd (46.83%) treated EPS and unchanged crystallinity (CIXRD=0.13), inferred EPS-metal binding via both electrostatic interactions and complexation mechanism. EPS-metal interaction was predominantly promoted through hydroxyl, amide, carboxyl, and phosphate groups. Metal adsorption deviated EPS protein secondary structures. Strong static quenching mechanism between tryptophan protein-like substances in EPS and heavy metals was evidenced. EPS sequestered heavy metals via complexation with C-O, C-OH, CO/O-C-O, and NH/NH2 groups and ion exchange with -COOH group. This study unveils the fate of Cr, Pb, and Cd on EPS surface and provides insight into the interactions among EPS and metal ions for metal sequestration.


Assuntos
Cádmio , Cromo , Metais Pesados , Cádmio/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Pseudomonas aeruginosa/metabolismo , Chumbo/análise , Metais Pesados/análise , Adsorção
11.
Phytomedicine ; 123: 155157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951147

RESUMO

BACKGROUND: Bacopa monnieri (BM) is traditionally used in human diseases for its antioxidant, anti-inflammatory and neuroprotective effects. However, its anticancer potential has been poorly understood. AIM: The aim of this study was to explore the detailed anticancer mechanism of BM against oral cancer and to identify the bioactive BM fraction for possible cancer therapeutics. RESULTS: We performed bioactivity-guided fractionation and identified that the aqueous fraction of the ethanolic extract of BM (BM-AF) had a potent anticancer potential in both in vitro and in vivo oral cancer models. BM-AF inhibited cell viability, colony formation, cell migration and induced apoptotic cell death in Cal33 and FaDu cells. BM-AF at low doses promoted mitophagy and BM-AF mediated mitophagy was PARKIN dependent. In addition, BM-AF inhibited arecoline induced reactive oxygen species production in Cal33 cells. Moreover, BM-AF supressed arecoline-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation through mitophagy in Cal33 cells. The in vivo antitumor effect of BM-AF was further validated in C57BL/6J mice through a 4-nitroquinolin-1-oxide and arecoline-induced oral cancer model. The tumor incidence was significantly reduced in the BM-AF treated group. Further, data obtained from western blot and immunohistochemistry analysis showed increased expression of apoptotic markers and decreased expression of inflammasome markers in the tongue tissue obtained from BM-AF treated mice in comparison with the non-treated tumor bearing mice. CONCLUSION: In conclusion, BM-AF exhibited potent anticancer activity through apoptosis induction and mitophagy-dependent inhibition of NLRP3 inflammasome activation in both in vitro and in vivo oral cancer models. Moreover, we have investigated apoptosis and mitophagy-inducing compounds from this plant extract having anticancer activity against oral cancer cells.


Assuntos
Bacopa , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Camundongos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia , Bacopa/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Arecolina/farmacologia , Neoplasias Bucais/tratamento farmacológico , Camundongos Endogâmicos C57BL , Apoptose , Espécies Reativas de Oxigênio/metabolismo
12.
Microb Pathog ; 185: 106432, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926364

RESUMO

Salmonella spp. are facultative anaerobic, Gram-negative, rod-shaped bacteria and belongs to the Enterobacteriaceae family. Although much has been known about Salmonella pathogenesis, the functional characterizations of certain genes are yet to be explored. The rspA (STM14_1818) is one such gene with putative dehydratase function, and its role in pathogenesis is unknown. The background information showed that rspA gene is upregulated in Salmonella when it resides inside macrophages, which led us to investigate its role in Salmonella pathogenesis. We generated the rspA knockout strain and complement strain in S. Typhimurium 14028. Ex-vivo and in-vivo infectivity was looked at macrophage and epithelial cell lines and Caenorhabditis elegans (C. elegans). The mutant strain differentially formed the biofilm at different temperatures by altering the expression of genes involved in the synthesis of cellulose and curli. Besides, the mutant strain is hyperproliferative intracellularly and showed increased bacterial burden in C. elegans. The mutant strain became more infectious and lethal, causing faster death of the worms than the wild type, and also modulates the worm's innate immunity. Thus, we found that the rspA deletion mutant was more pathogenic. In this study, we concluded that the rspA gene differentially regulates the biofilm formation in a temperature dependent manner by modulating the genes involved in the synthesis of cellulose and curli and negatively regulates the Salmonella virulence for longer persistence inside the host.


Assuntos
Caenorhabditis elegans , Salmonella typhimurium , Animais , Virulência/genética , Caenorhabditis elegans/microbiologia , Proteínas de Bactérias/metabolismo , Biofilmes , Celulose , Regulação Bacteriana da Expressão Gênica
13.
ACS Appl Mater Interfaces ; 15(48): 56022-56033, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38010192

RESUMO

Flexible paper-based thermoelectric generators (PTEGs) have drawn significant interest in recent years due to their various advantages such as flexibility, adaptability, environment friendliness, low cost, and easy fabrication process. However, the reported PTEG's output performance still lags behind the performance of other flexible devices as it is not so easy to obtain a compact film on a paper-based substrate with desirable power output with the standard thermoelectric (TE) materials that have been previously utilized. In this direction, Cu2SnS3 (CTS), an earth-abundant, ternary sulfide, can be a good choice p-type semiconductor, when paired with a suitable n-type TE material. In this article, CTS nanocubes are synthesized via a simple hot injection method and a thick film device on emery paper was prepared and optimized. Furthermore, a flexible, 20-pair PTEG is fabricated with p-type CTS legs and traced and pressed n-type bismuth legs assembled using Kapton tape that produced a significantly high output power of 2.18 µW (output power density ∼0.85 nW cm-2 K-1) for a temperature gradient of ΔT = 80 K. The TE properties are also supported by finite element simulation. The bending test conducted for the PTEG suggests device stability for up to 800 cycles with <0.05% change in the internal resistance. A proof-of-concept field-based demonstration for energy harvesting from waste heat of a motorbike exhaust is shown recovering an output power of ∼42 nW for ΔT = 20 K, corroborating the experimental and theoretical results.

14.
Chemistry ; 29(70): e202302529, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37846644

RESUMO

We showed solvent- and concentration-triggered chiral tuning of the fibrous assemblies of two novel glycoconjugates Z-P(Gly)-Glu and Z-F(4-N)-Glu made by chemical attachment of Cbz-protected [short as Z)] non-proteinogenic amino acids L-phenylglycine [short as P(Gly)] and 4-Nitro-L-phenylalanine [short as F(4-N)] with D-glucosamine [short as Glu]. Both biomimetic gelators can form self-healing and shape-persistent gels with a very low critical gelator concentration in water as well as in various organic solvents, indicating they are ambidextrous supergelators. Detailed spectroscopic studies suggested ß-sheet secondary structure formation during anisotropic self-aggregation of the gelators which resulted in the formation of hierarchical left-handed helical fibers in acetone with an interlayer spacing of 2.4 nm. After the physical characterization of the gels, serum protein interaction with the gelators was assessed, indicating they may be ideal for biomedical applications. Further, both gelators are benign, non-immunogenic, non-allergenic, and non-toxic in nature, which was confirmed by performing the blood parameters and liver function tests on Wister rats. Streptomycin-loaded hydrogels showed efficacious antibacterial activity in vitro and in vivo as well. Finally, cell attachment and biocompatibility of the hydrogels were demonstrated which opens a newer avenue for promising biomedical and therapeutic applications.


Assuntos
Aminoácidos , Estreptomicina , Ratos , Animais , Aminoácidos/química , Solventes/química , Ratos Wistar , Hidrogéis/química
15.
Environ Pollut ; 339: 122722, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37863253

RESUMO

Bacteria thriving in the mangrove ecosystem are major drivers of elemental cycles. Climate change and environmental stressors (heavy metals) influence the performance of these microorganisms, thereby affecting the biogeochemical cycle. The present study reports the genotoxic effect of climatic and heavy metal stressors on mangrove bacteria and their adaptation strategies. Comparative analysis between two bacterial strains, Bacillus stercoris GST-03 and Pseudomonas balearica DST-02 isolated from the Bhitarkanika mangrove ecosystem, Odisha, India, showed cellular injuries in response to various stressors as evident by declined growth, elevated levels of reactive oxygen species (ROS) and resulted DNA damage. B. stercoris GST-03 showed more tolerance towards acidic pH, whereas P. balearica DST-02 showed higher tolerance towards UV exposure and heavy metals (Lead and Cadmium). The adaptation strategies of the strains revealed a significant role of GST in ROS scavenging activity and the involvement of Nucleotide excision repair or SOS response pathways. However, irreparable DNA damage was observed at pH 9 and 200 ppm Cd in B. stercoris GST-03, and at pH 4, 1000 ppm of Pb and 200 ppm of Cd in P. balearica DST-02. The current findings provide a broad overview of bacterial response and adaptability concerning future climate and environmental changes.


Assuntos
Cádmio , Metais Pesados , Bactérias/metabolismo , Cádmio/metabolismo , Dano ao DNA , Reparo do DNA , Ecossistema , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio
16.
Microbiol Res ; 276: 127483, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666077

RESUMO

Manglicolous filamentous fungi release extracellular lignolytic enzymes that can readily degrade polycyclic aromatic hydrocarbons (PAHs). The present study emphasizes the role of the extracellular enzyme in phenanthrene degradation by the manglicolous fungus Trichoderma sp. CNSC-2 isolated from the Indian Sundarban mangrove ecosystem. The removal efficiency reached 64.05 ± 0.75 % in 50 mg l-1 phenanthrene-amended mineral salt medium at pH 5.6 after 10 days of incubation. Phenanthrene removal was optimized at different pH, nutrient sources, and Cu2+ concentrations. The degradation significantly increased to 67.75 ± 4.32 % at pH 6 (P < 0.0001). The addition of Cu2+ (30 mg l-1) increased the degradation to 78.15 ± 0.36 % (P < 0.0001). The validation experiment confirmed the increase in phenanthrene degradation up to 79.9 ± 1.67 % under optimized conditions. The Lac1 and CytP450 genes encoding for extracellular and intracellular enzymes, respectively, were identified. The GC-MS derived phenanthrene degradation metabolites, i.e., phthalic acid, isobutyl 2-pentyl ester derivative, 1, 2 benzene dicarboxylic acid, butyl 2-methyl propyl ester derivative, TMS derivative of benzoic acid and 3,5 dihydroxy benzoic acid determined two possible metabolic pathways. The laccase enzyme activity was higher in the presence of Phe+Cu2+ (P < 0.0001), indicating the enzyme induction potential of PAH and Cu2+ ions. Purified laccase had a molecular weight of 45 kDa and was highly stable at pH 4-6 and temperature 20-50 °C. The enzyme retained 47 %, 87 %, and 63 % of enzyme activity at 30 mg l-1 concentration of Pb2+, Cd2+, and Hg2+. However, laccase activity was induced by 1.37 folds in the presence of 30 mg l-1 Cu2+ concentration. Thus, the study suggests the potential role of Trichoderma sp. CNSC-2 in phenanthrene degradation.


Assuntos
Fenantrenos , Trichoderma , Ecossistema , Lacase/genética , Trichoderma/genética , Ácido Benzoico , Ésteres
17.
Trop Anim Health Prod ; 55(5): 286, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540276

RESUMO

Precision livestock farming (PLF) utilizes information and communication technology (ICT) to continuously monitor, control, and enhance the productivity, reproduction, health, welfare, and environmental impact of livestock. Technological advancements have facilitated the seamless flow of information from animals to humans, enabling practical decision-making processes concerning health, reproduction management, and calving surveillance. With the increasing population of livestock per farm, it has become impractical for farmers to individually track every animal within these large groups. Historically, cattle management decisions heavily relied on human observation, judgment, and experience. However, it is impossible for a single individual to gather reliable audio-visual monitoring data round the clock. Presently, dairy cows exhibit subtler indicators of estrus, resulting in a substantial chance of missing an estrus cycle. Furthermore, calving complications sometimes go unnoticed on farms, resulting in a higher number of culled cattle. In addition, an increasing number of crossbred cows experience delayed return to estrus after calving due to low body condition scores (BCS). The decline in BCS during the dry period is associated with a reduced likelihood of pregnancy following the first and second postpartum inseminations. Precision technologies enable the monitoring and tracking of an individual cow's physiological behavior and reproductive parameters, thereby optimizing management practices and farm performance. Despite the exploration of various technologies, there are still some common challenges that need to be addressed, including battery lifespan, transmission range, specificity and sensitivity, storage capacity, and economic affordability. Nonetheless, the demand for these tools from farmers and researchers is growing, and the implementation of PLF in grazing systems can yield positive outcomes in terms of animal reproductive welfare and labor optimization. This review primarily focuses on the different aspects of reproduction management in dairy using sensors, automated cameras, and various computer software.


Assuntos
Lactação , Leite , Gravidez , Feminino , Bovinos , Humanos , Animais , Reprodução/fisiologia , Fazendas , Tecnologia , Indústria de Laticínios/métodos
18.
J Hazard Mater ; 457: 131795, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37301070

RESUMO

Biofilm-forming marine bacterium Pseudomonas furukawaii PPS-19 showed strong hydrophobicity under different physicochemical stressors, such as pH and salinity. Strong aggregation of P. furukawaii PPS-19 was observed at hydrophobic interfaces of n-dodecane and crude oil, while uptake of pyrene resulted in blue fluorescence of the bacterium. Changes in biofilm microcolonies were observed under different physicochemical stressors with maximum biofilm thickness of 15.15 µm and 15.77 µm at pH 7% and 1% salinity, respectively. Relative expression analysis of alkB2 gene revealed the maximum expression in n-dodecane (10.5 fold) at pH 7 (1 fold) and 1% salinity (8.3 fold). During the degradation process, a significant drop in surface tension resulted in increased emulsification activity. P. furukawaii PPS-19 showed the respective n-dodecane and pyrene degradation of 94.3% and 81.5% at pH 7% and 94.5% and 83% at 1% salinity. A significant positive correlation was obtained between cell surface hydrophobicity (CSH), biofilm formation, and PHs degradation (P < 0.05) under all the physicochemical stressors, with the highest value at pH 7% and 1% salinity. Analysis of metabolites indicated that mono-terminal oxidation and multiple pathways were followed for n-dodecane and pyrene biodegradation, respectively. Thus, P. furukawaii PPS-19 is an efficient hydrocarbonoclastic bacterium that may be exploited for large-scale oil pollution abatement.


Assuntos
Poluição por Petróleo , Petróleo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Biofilmes , Bactérias/metabolismo , Pirenos , Interações Hidrofóbicas e Hidrofílicas
19.
J Supercomput ; : 1-31, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37359323

RESUMO

Machine learning (ML) has been used for classification of heart diseases for almost a decade, although understanding of the internal working of the black boxes, i.e., non-interpretable models, remain a demanding problem. Another major challenge in such ML models is the curse of dimensionality leading to resource intensive classification using the comprehensive set of feature vector (CFV). This study focuses on dimensionality reduction using explainable artificial intelligence, without negotiating on accuracy for heart disease classification. Four explainable ML models, using SHAP, were used for classification which reflected the feature contributions (FC) and feature weights (FW) for each feature in the CFV for generating the final results. FC and FW were taken into account in generating the reduced dimensional feature subset (FS). The findings of the study are as follows: (a) XGBoost classifies heart diseases best with explanations, with an increase in 2% in model accuracy over existing best proposals, (b) explainable classification using FS exhibits better accuracy than most of the literary proposals, and (c) with the increase in explainability, accuracy can be preserved using XGBoost classifier for classifying heart diseases, and (d) the top four features responsible for diagnosis of heart disease have been exhibited which have common occurrences in all the explanations reflected by the five explainable techniques used on XGBoost classifier based on feature contributions. To the best of our knowledge, this is first attempt to explain XGBoost classification for diagnosis of heart diseases using five explainable techniques.

20.
Environ Sci Pollut Res Int ; 30(33): 79676-79705, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37330441

RESUMO

Contamination of soil and natural water bodies driven by increased organic pollutants remains a universal concern. Naturally, organic pollutants contain carcinogenic and toxic properties threatening all known life forms. The conventional physical and chemical methods employed to remove these organic pollutants ironically produce toxic and non-ecofriendly end-products. Whereas microbial-based degradation of organic pollutants provides an edge, they are usually cost-effective and take an eco-friendly approach towards remediation. Bacterial species, including Pseudomonas, Comamonas, Burkholderia, and Xanthomonas, have the unique genetic makeup to metabolically degrade toxic pollutants, conferring their survival in toxic environments. Several catabolic genes, such as alkB, xylE, catA, and nahAc, that encode enzymes and allow bacteria to degrade organic pollutants have been identified, characterized, and even engineered for better efficacy. Aerobic and anaerobic processes are followed by bacteria to metabolize aliphatic saturated and unsaturated hydrocarbons such as alkanes, cycloalkanes, aldehydes, and ethers. Bacteria use a variety of degrading pathways, including catechol, protocatechuate, gentisate, benzoate, and biphenyl, to remove aromatic organic contaminants such as polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and pesticides from the environment. A better understanding of the principle, mechanisms, and genetics would be beneficial for improving the metabolic efficacy of bacteria to such ends. With a focus on comprehending the mechanisms involved in various catabolic pathways and the genetics of the biotransformation of these xenobiotic compounds, the present review offers insight into the various sources and types of known organic pollutants and their toxic effects on health and the environment.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Poluentes Ambientais/metabolismo , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Biotransformação , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA