RESUMO
Heat shock factors regulate responses to high temperature, salinity, water deprivation, or heavy metals. Their function in combinations of stresses is, however, not known. Arabidopsis HEAT SHOCK FACTOR A4A (HSFA4A) was previously reported to regulate responses to salt and oxidative stresses. Here we show, that the HSFA4A gene is induced by salt, elevated temperature, and a combination of these conditions. Fast translocation of HSFA4A tagged with yellow fluorescent protein from cytosol to nuclei takes place in salt-treated cells. HSFA4A can be phosphorylated not only by mitogen-activated protein (MAP) kinases MPK3 and MPK6 but also by MPK4, and Ser309 is the dominant MAP kinase phosphorylation site. In vivo data suggest that HSFA4A can be the substrate of other kinases as well. Changing Ser309 to Asp or Ala alters intramolecular multimerization. Chromatin immunoprecipitation assays confirmed binding of HSFA4A to promoters of target genes encoding the small heat shock protein HSP17.6A and transcription factors WRKY30 and ZAT12. HSFA4A overexpression enhanced tolerance to individually and simultaneously applied heat and salt stresses through reduction of oxidative damage. Our results suggest that this heat shock factor is a component of a complex stress regulatory pathway, connecting upstream signals mediated by MAP kinases MPK3/6 and MPK4 with transcription regulation of a set of stress-induced target genes.
Assuntos
Arabidopsis/genética , Resposta ao Choque Térmico/genética , Estresse Salino/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Cloreto de Sódio/efeitos adversos , Fatores de TranscriçãoRESUMO
This study mainly focuses on the cytogenetic toxicity induction by zoledronic acid (ZA), a nitrogen containing bisphosphonate (N-BPs) in the male germline cells of Swiss albino mice. A single intraperitoneal exposure with three different doses of ZA (2, 4, and 8 mg/kg body weight), toxicity was assessed by analyzing spermatogonial metaphase chromosome aberrations at 24 h, aberrant primary spermatocytes at week 4, and abnormal spermatozoa at week 8 posttreatment. Cyclophosphamide (40 mg/kg) and 0.9% NaCl were used as positive and vehicle controls respectively in the study. The results showed that there was a significant induction in the number of chromosomal aberrations especially at two doses of ZA (4 and 8 mg/kg) after 24 h in the spermatogonial cells (p < 0.001) compared to vehicle control. The transmission genetic damages were noticed as aberrant spermatocytes with atypical bivalents (X-Y/autosomal asynapsis) at 4 mg/kg of ZA (p < 0.01) and at 8 mg/kg of ZA (p < 0.001) at week 4 posttreatment. A statistically significant higher number of abnormal spermatozoa (sperm) were also noticed at week 8 posttreatment of both at 4 and 8 mg/kg of ZA (p < 0.001). Hence, from these genotoxicity studies, it can be concluded that ZA is genotoxic in male germline cells and has the potential of transmitting the genotoxic effects from spermatogonial cells to sperm in male Swiss mice.