Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(37): e2203469, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917499

RESUMO

The potential for creating hierarchical domain structures, or mixtures of energetically degenerate phases with distinct patterns that can be modified continually, in ferroelectric thin films offers a pathway to control their mesoscale structure beyond lattice-mismatch strain with a substrate. Here, it is demonstrated that varying the strontium content provides deterministic strain-driven control of hierarchical domain structures in Pb1- x Srx TiO3  solid-solution thin films wherein two types, c/a and a1 /a2 , of nanodomains can coexist. Combining phase-field simulations, epitaxial thin-film growth, detailed structural, domain, and physical-property characterization, it is observed that the system undergoes a gradual transformation (with increasing strontium content) from droplet-like a1 /a2  domains in a c/a domain matrix, to a connected-labyrinth geometry of c/a domains, to a disconnected labyrinth structure of the same, and, finally, to droplet-like c/a domains in an a1 /a2  domain matrix. A relationship between the different mixed-phase modulation patterns and its topological nature is established. Annealing the connected-labyrinth structure leads to domain coarsening forming distinctive regions of parallel c/a and a1 /a2  domain stripes, offering additional design flexibility. Finally, it is found that the connected-labyrinth domain patterns exhibit the highest dielectric permittivity.

2.
Adv Mater ; 34(1): e2105967, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34599789

RESUMO

The hafnate perovskites PbHfO3 (antiferroelectric) and SrHfO3 ("potential" ferroelectric) are studied as epitaxial thin films on SrTiO3 (001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1- x Srx HfO3 system. The resulting (240)-oriented PbHfO3 (Pba2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm-2 at 1.6 MV cm-1 , weak-field dielectric constant ≈186 at 298 K, and an antiferroelectric-to-paraelectric phase transition at ≈518 K. (002)-oriented SrHfO3 films exhibited neither ferroelectric behavior nor evidence of a polar P4mm phase . Instead, the SrHfO3 films exhibited a weak-field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77-623 K) and electric field (-3 to 3 MV cm-1 ). While the lack of ferroelectric order in SrHfO3 removes the potential for MPB, structural and property evolution of the Pb1- x Srx HfO3 (0 ≤ x < 1) system is explored. Strontium alloying increased the electric-breakdown strength (EB ) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (Ur ) and efficiency (η). The composition, Pb0.5 Sr0.5 HfO3 produced the best combination of EB  = 5.12 ± 0.5 MV cm-1 , Ur  = 77 ± 5 J cm-3 , and η = 97 ± 2%, well out-performing PbHfO3 and other antiferroelectric oxides.

3.
ACS Nano ; 15(9): 15096-15103, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34495651

RESUMO

The dynamics of complex topological defects in ferroelectric materials is explored using automated experimentation in piezoresponse force microscopy. Specifically, a complex trigger system (i.e., "FerroBot") is employed to study metastable domain-wall dynamics in Pb0.6Sr0.4TiO3 thin films. Several regimes of superdomain wall dynamics have been identified, including smooth domain-wall motion and significant reconfiguration of the domain structures. We have further demonstrated that microscopic mechanisms of the domain-wall dynamics can be identified; i.e., domain-wall bending can be separated from irreversible domain reconfiguration regimes. In conjunction, phase-field modeling was used to corroborate the observed mechanisms. As such, the observed superdomain dynamics can provide a model system for classical ferroelectric dynamics, much like how colloidal crystals provide a model system for atomic and molecular systems.

4.
Nature ; 560(7720): 622-627, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30127406

RESUMO

Ordering of ferroelectric polarization1 and its trajectory in response to an electric field2 are essential for the operation of non-volatile memories3, transducers4 and electro-optic devices5. However, for voltage control of capacitance and frequency agility in telecommunication devices, domain walls have long been thought to be a hindrance because they lead to high dielectric loss and hysteresis in the device response to an applied electric field6. To avoid these effects, tunable dielectrics are often operated under piezoelectric resonance conditions, relying on operation well above the ferroelectric Curie temperature7, where tunability is compromised. Therefore, there is an unavoidable trade-off between the requirements of high tunability and low loss in tunable dielectric devices, which leads to severe limitations on their figure of merit. Here we show that domain structure can in fact be exploited to obtain ultralow loss and exceptional frequency selectivity without piezoelectric resonance. We use intrinsically tunable materials with properties that are defined not only by their chemical composition, but also by the proximity and accessibility of thermodynamically predicted strain-induced, ferroelectric domain-wall variants8. The resulting gigahertz microwave tunability and dielectric loss are better than those of the best film devices by one to two orders of magnitude and comparable to those of bulk single crystals. The measured quality factors exceed the theoretically predicted zero-field intrinsic limit owing to domain-wall fluctuations, rather than field-induced piezoelectric oscillations, which are usually associated with resonance. Resonant frequency tuning across the entire L, S and C microwave bands (1-8 gigahertz) is achieved in an individual device-a range about 100 times larger than that of the best intrinsically tunable material. These results point to a rich phase space of possible nanometre-scale domain structures that can be used to surmount current limitations, and demonstrate a promising strategy for obtaining ultrahigh frequency agility and low-loss microwave devices.

5.
Phys Rev Lett ; 120(22): 227601, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906143

RESUMO

Out-of-plane ferroelectricity with a high transition temperature in ultrathin films is important for the exploration of new domain physics and scaling down of memory devices. However, depolarizing electrostatic fields and interfacial chemical bonds can destroy this long-range polar order at two-dimensional (2D) limit. Here we report the experimental discovery of the locking between out-of-plane dipoles and in-plane lattice asymmetry in atomically thin In_{2}Se_{3} crystals, a new stabilization mechanism leading to our observation of intrinsic 2D out-of-plane ferroelectricity. Through second harmonic generation spectroscopy and piezoresponse force microscopy, we found switching of out-of-plane electric polarization requires a flip of nonlinear optical polarization that corresponds to the inversion of in-plane lattice orientation. The polar order shows a very high transition temperature (∼700 K) without the assistance of extrinsic screening. This finding of intrinsic 2D ferroelectricity resulting from dipole locking opens up possibilities to explore 2D multiferroic physics and develop ultrahigh density memory devices.

6.
Nat Mater ; 17(5): 432-438, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662157

RESUMO

The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3. Electric-field-driven enhancement of the pyroelectric response (as large as -550 µC m-2 K-1) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert low-grade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm-3, 526 W cm-3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.

7.
Nat Commun ; 8: 14961, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28488672

RESUMO

A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (TC). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba1-xSrxTiO3 films which result in spatial polarization gradients as large as 35 µC cm-2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ɛr≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA