Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 716: 150030, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704889

RESUMO

Sugar phosphates are potential sources of carbon and phosphate for bacteria. Despite that the process of internalization of Glucose-6-Phosphate (G6P) through plasma membrane remained elusive in several bacteria. VCA0625-27, made of periplasmic ligand binding protein (PLBP) VCA0625, an atypical monomeric permease VCA0626, and a cytosolic ATPase VCA0627, recently emerged as hexose-6-phosphate uptake system of Vibrio cholerae. Here we report high resolution crystal structure of VCA0625 in G6P bound state that largely resembles AfuA of Actinobacillus pleuropneumoniae. MD simulations on VCA0625 in apo and G6P bound states unraveled an 'open to close' and swinging bi-lobal motions, which are diminished upon G6P binding. Mutagenesis followed by biochemical assays on VCA0625 underscored that R34 works as gateway to bind G6P. Although VCA0627 binds ATP, it is ATPase deficient in the absence of VCA0625 and VCA0626, which is a signature phenomenon of type-I ABC importer. Further, modeling, docking and systematic sequence analysis allowed us to envisage the existence of similar atypical type-I G6P importer with fused monomeric permease in 27 other gram-negative bacteria.


Assuntos
Proteínas de Bactérias , Glucose-6-Fosfato , Vibrio cholerae , Vibrio cholerae/metabolismo , Vibrio cholerae/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Simulação de Dinâmica Molecular , Conformação Proteica , Modelos Moleculares , Ligação Proteica , Sítios de Ligação
2.
Structure ; 32(2): 200-216.e5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157857

RESUMO

Phosphorylation of the σ54-dependent transcription activator FlrC by the sensor histidine kinase FlrB is essential for flagellar synthesis of Vibrio cholerae. Despite that, the structure, sensory signal, and mechanistic basis of function of FlrB were elusive. Here, we report the crystal structure of the sensory PAS domain of FlrB in its functional dimeric state that exhibits a unique architecture. Series of biochemical/biophysical experiments on different constructs and mutants established that heme binds hydrophobically as sensory ligand in the shallow ligand-binding cleft of FlrB-PAS without axial coordination. Intriguingly, ATP binding to the C-terminal ATP-binding (CA) domain assists PAS domain to bind heme, vis-à-vis, heme binding to the PAS facilitates ATP binding to the CA domain. We hypothesize that synergistic binding of heme and ATP triggers conformational signaling in FlrB, leading to downstream flagellar gene transcription. Enhanced swimming motility of V. cholerae with increased heme uptake supports this proposition.


Assuntos
Proteínas de Bactérias , Heme , Proteínas de Bactérias/química , Histidina Quinase/genética , Ligantes , Trifosfato de Adenosina
3.
FEBS Lett ; 597(17): 2161-2177, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37402215

RESUMO

In Vibrio cholerae, the master regulator FlrA controls transcription of downstream flagellar genes in a σ54 -dependent manner. However, the molecular basis of regulation by VcFlrA, which contains a phosphorylation-deficient N-terminal FleQ domain, has remained elusive. Our studies on VcFlrA, four of its constructs, and a mutant showed that the AAA+ domain of VcFlrA, with or without the linker 'L', remains in ATPase-deficient monomeric states. By contrast, the FleQ domain plays a pivotal role in promoting higher-order functional oligomers, providing the required conformation to 'L' for ATP/cyclic di-GMP (c-di-GMP) binding. The crystal structure of VcFlrA-FleQ at 2.0 Å suggests that distinct structural features of VcFlrA-FleQ presumably assist in inter-domain packing. VcFlrA at a high concentration forms ATPase-efficient oligomers when the intracellular c-di-GMP level is low. Conversely, excess c-di-GMP locks VcFlrA in a non-functional lower oligomeric state, causing repression of flagellar biosynthesis.


Assuntos
Transativadores , Vibrio cholerae , Transativadores/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Adenosina Trifosfatases/metabolismo , GMP Cíclico/metabolismo , Biofilmes
4.
Sci Rep ; 12(1): 7152, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504999

RESUMO

Heme internalization by pathogenic bacteria inside a human host to accomplish the requirement of iron for important cellular processes is of paramount importance. Despite this, the mechanism of heme import by the ATP-binding-cassette (ABC) transporter HutCD in Vibrio cholerae remains unexplored. We have performed biochemical studies on ATPase HutD and its mutants, along with molecular modelling, docking and unbiased all-atom MD simulations on lipid-solvated models of permease-ATPase complex HutCD. The results demonstrated mechanisms of ATP binding/hydrolysis and trapped transient and global conformational changes in HutCD, necessary for heme internalization. ATPase HutD forms a dimer, independent of the permease HutC. Each HutD monomer canonically binds ATP in a 1:1 stoichiometry. MD simulations demonstrated that a rotational motion of HutC dimer occurs synchronously with the inter-dimeric D-loop interactions of HutDs. F151 of TM4-TM5 loop of HutC, packs with ATP and Y15 of HutD, initiating 'cytoplasmic gate opening' which mimics an 'outward-facing' to 'inward-facing' conformational switching upon ATP hydrolysis. The simulation on 'inward-facing' HutCD culminates to an 'occluded' state. The simulation on heme-docked HutCD indicated that the event of heme release occurs in ATP-free 'inward-facing' state. Gradual conformational changes of the TM5 helices of HutC towards the 'occluded' state facilitate ejection of heme.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias/metabolismo , Heme , Vibrio cholerae , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Heme/metabolismo , Humanos , Vibrio cholerae/metabolismo
5.
J Biol Chem ; 295(50): 16960-16974, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32998953

RESUMO

The bacterial enhancer-binding protein (bEBP) FlrC, controls motility and colonization of Vibrio cholerae by regulating the transcription of class-III flagellar genes in σ54-dependent manner. However, the mechanism by which FlrC regulates transcription is not fully elucidated. Although, most bEBPs require nucleotides to stimulate the oligomerization necessary for function, our previous study showed that the central domain of FlrC (FlrCC) forms heptamer in a nucleotide-independent manner. Furthermore, heptameric FlrCC binds ATP in "cis-mediated" style without any contribution from sensor I motif 285REDXXYR291 of the trans protomer. This atypical ATP binding raises the question of whether heptamerization of FlrC is solely required for transcription regulation, or if it is also critical for ATPase activity. ATPase assays and size exclusion chromatography of the trans-variants FlrCC-Y290A and FlrCC-R291A showed destabilization of heptameric assembly with concomitant abrogation of ATPase activity. Crystal structures showed that in the cis-variant FlrCC-R349A drastic shift of Walker A encroached ATP-binding site, whereas the site remained occupied by ADP in FlrCC-Y290A. We postulated that FlrCC heptamerizes through concentration-dependent cooperativity for maximal ATPase activity and upon heptamerization, packing of trans-acting Tyr290 against cis-acting Arg349 compels Arg349 to maintain proper conformation of Walker A. Finally, a Trp quenching study revealed binding of cyclic-di-GMP with FlrCC Excess cyclic-di-GMP repressed ATPase activity of FlrCC through destabilization of heptameric assembly, especially at low concentration of protein. Systematic phylogenetic analysis allowed us to propose similar regulatory mechanisms for FlrCs of several Vibrio species and a set of monotrichous Gram-negative bacteria.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , GMP Cíclico/análogos & derivados , Flagelos/fisiologia , Vibrio cholerae/fisiologia , Cólera/genética , Cólera/metabolismo , Cristalografia por Raios X/métodos , GMP Cíclico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Filogenia , Estrutura Terciária de Proteína
6.
Biochim Biophys Acta Proteins Proteom ; 1867(2): 140-151, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30463026

RESUMO

Biosynthesis of vitamin B12, which occurs through salvaging pathway or de novo synthesis, is essential for the survival and growth of bacteria. While the mechanism is known for many bacteria, it is elusive yet for diarrhea causing pathogenic bacteria Vibrio cholerae or the other Vibrio species. Sequence analysis using genome databases delineated that majority of the Vibrio species including V. cholerae contain genes required for salvaging cobalamin/cobinamide in aerobic pathway while lack the genes required for de novo synthesis of B12. Fluorescence quenching study showed that VcBtuF, the PBP of putative ABC transporter BtuF-CD of V. cholerae O395 binds cyanocobalamin and dicyanocobinamide with micromolar dissociation constants (Kd). Productive internalization of these nutrients has been established through growth assay. The crystal structure of cyanocobalamin bound VcBtuF has shown that although interactions between cyanocobalamin and VcBtuF are largely similar to E. coli BtuF, VcBtuF possesses a wider binding pocket. MD simulations indicated that in contrast to EcBtuF that executes 'open-close' movement, inter-lobe twisting is prevalent in VcBtuF. Although H70, located at the entrance of the substrate binding cleft of VcBtuF, executes swinging motion, it cannot act as 'closed gate' to retain cyanocobalamin or cobinamide in the pocket like corresponding residue W66 of EcBtuF. Rather, VcBtuF shows a distinctive phenomenon of heme binding with comparable affinity to B12. Soret shift of heme upon binding with VcBtuF pointed towards involvement of H70 in heme recognition. This may lead to a restricted B12 or cobinamide binding during abundance of heme in the periplasmic space.


Assuntos
Cobamidas/metabolismo , Vibrio/metabolismo , Vitamina B 12/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Heme/metabolismo , Modelos Moleculares , Nitrilas/metabolismo , Compostos Organometálicos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Ligação Proteica , Conformação Proteica , Vibrio/enzimologia , Vibrio/genética , Vitamina B 12/biossíntese
7.
Sci Rep ; 7: 42812, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28216648

RESUMO

Molecular mechanisms of xenosiderophore and heme acquisitions using periplasmic binding protein (PBP) dependent ATP-binding cassette transporters to scavenge the essential nutrient iron are elusive yet in Vibrio cholerae. Our current study delineates the structures, dynamics and ligand binding properties of two Type III PBPs of V. cholerae, VcFhuD and VcHutB. Through crystal structures and fluorescence quenching studies we demonstrate unique features of VcFhuD to bind both hydroxamate and catecholate type xenosiderophores. Like E. coli FhuD, VcFhuD binds ferrichrome and ferri-desferal using conserved Tryptophans and R102. However, unlike EcFhuD, slightly basic ligand binding pocket of VcFhuD could favour ferri-enterobactin binding with plausible participation of R203, along with R102, like it happens in catecholate binding PBPs. Structural studies coupled with spectrophotometric and native PAGE analysis indicated parallel binding of two heme molecules to VcHutB in a pH dependent manner, while mutational analysis established the relative importance of Y65 and H164 in heme binding. MD simulation studies exhibited an unforeseen inter-lobe swinging motion in Type III PBPs, magnitude of which is inversely related to the packing of the linker helix with its neighboring helices. Small inter-lobe movement in VcFhuD or dramatic twisting in VcHutB is found to influence ligand binding.


Assuntos
Enterobactina/metabolismo , Ácidos Hidroxâmicos/metabolismo , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Heme/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Proteínas Periplásmicas de Ligação/genética , Ligação Proteica , Conformação Proteica , Vibrio cholerae/química , Vibrio cholerae/genética
8.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 4): 401-4, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849499

RESUMO

The mechanism of haem transport across the inner membrane of pathogenic bacteria is currently insufficiently understood at the molecular level and no information is available for this process in Vibrio cholerae. To obtain structural insights into the periplasmic haem-binding protein HutB from V. cholerae (VcHutB), which is involved in haem transport through the HutBCD haem-transport system, at the atomic level, VcHutB was cloned, overexpressed and crystallized using 1.6 M ammonium sulfate as a precipitant at pH 7.0. X-ray diffraction data were collected to 2.4 Šresolution on the RRCAT PX-BL-21 beamline at the Indus-2 synchrotron, Indore, India. The crystals belonged to space group P43212, with unit-cell parameters a = b = 62.88, c = 135.8 Å. Matthews coefficient calculations indicated the presence of one monomer in the asymmetric unit, with an approximate solvent content of 45.02%. Molecular-replacement calculations with Phaser confirmed the presence of a monomer in the asymmetric unit.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Hemeproteínas/química , Hemeproteínas/isolamento & purificação , Periplasma/química , Vibrio cholerae , Cristalização , Proteínas Ligantes de Grupo Heme , Difração de Raios X
9.
J Biol Chem ; 290(14): 8734-47, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25688103

RESUMO

Bacterial enhancer-binding proteins (bEBPs) oligomerize through AAA(+) domains and use ATP hydrolysis-driven energy to isomerize the RNA polymerase-σ(54) complex during transcriptional initiation. Here, we describe the first structure of the central AAA(+) domain of the flagellar regulatory protein FlrC (FlrC(C)), a bEBP that controls flagellar synthesis in Vibrio cholerae. Our results showed that FlrC(C) forms heptamer both in nucleotide (Nt)-free and -bound states without ATP-dependent subunit remodeling. Unlike the bEBPs such as NtrC1 or PspF, a novel cis-mediated "all or none" ATP binding occurs in the heptameric FlrC(C), because constriction at the ATPase site, caused by loop L3 and helix α7, restricts the proximity of the trans-protomer required for Nt binding. A unique "closed to open" movement of Walker A, assisted by trans-acting "Glu switch" Glu-286, facilitates ATP binding and hydrolysis. Fluorescence quenching and ATPase assays on FlrC(C) and mutants revealed that although Arg-349 of sensor II, positioned by trans-acting Glu-286 and Tyr-290, acts as a key residue to bind and hydrolyze ATP, Arg-319 of α7 anchors ribose and controls the rate of ATP hydrolysis by retarding the expulsion of ADP. Heptameric state of FlrC(C) is restored in solution even with the transition state mimicking ADP·AlF3. Structural results and pulldown assays indicated that L3 renders an in-built geometry to L1 and L2 causing σ(54)-FlrC(C) interaction independent of Nt binding. Collectively, our results underscore a novel mechanism of ATP binding and σ(54) interaction that strives to understand the transcriptional mechanism of the bEBPs, which probably interact directly with the RNA polymerase-σ(54) complex without DNA looping.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
10.
PLoS One ; 8(9): e73923, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066084

RESUMO

Vibrio cholerae contains multiple copies of chemotaxis response regulator (VcCheY1-VcCheY4) whose functions are elusive yet. Although previous studies suggested that only VcCheY3 directly switches the flagellar rotation, the involvement of VcCheY4 in chemotaxis could not be ruled out. None of these studies, however, focused on the structure, mechanism of activation or molecular basis of FliM binding of the VcCheYs. From the crystal structures of Ca(2+) and Mg(2+) bound VcCheY3 we proposed the presence of a conformational barrier composed of the hydrophobic packing of W61, M88 and V106 and a unique hydrogen bond between T90 and Q97 in VcCheY3. Lesser fluorescence quenching and higher Km value of VcCheY3, compared to its mutants VcCheY3-Q97A and VcCheY3-Q97A/E100A supported our proposition. Furthermore, aforesaid biochemical data, in conjunction with the structure of VcCheY3-Q97A, indicated that the coupling of T90 and Q97 restricts the movement of T90 toward the active site reducing the stabilization of the bound phosphate and effectively promoting autodephosphorylation of VcCheY3. The structure of BeF3(-) activated VcCheY3 insisted us to argue that elevated temperature and/or adequacy of phosphate pool might break the barrier of the free-state VcCheY3 and the conformational changes, required for FliM binding, occur upon phosphorylation. Structure of VcCheY4 has been solved in the free and sulfated states. VcCheY4(sulf), containing a bound sulfate at the active site, appears to be more compact and stable with a longer α4 helix, shorter ß4α4 loop and hydrogen bond between T82 and the sulfate compared to VcCheY4(free). While pull down assay of VcCheYs with VcFliMNM showed that only activated VcCheY3 can interact with VcFliMNM and VcCheY4 cannot, a knowledge based docking explained the molecular mechanism of the interactions between VcCheY3 and VcFliM and identified the limitations of VcCheY4 to interact with VcFliM even in its phosphorylated state.


Assuntos
Proteínas de Bactérias/metabolismo , Vibrio cholerae/metabolismo , Ligação Proteica/fisiologia , Conformação Proteica
11.
J Virol ; 87(21): 11426-37, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966387

RESUMO

Human papillomavirus (HPV) entry is accompanied by multiple receptor-induced conformational changes (CCs) affecting both the major and minor capsid proteins, L1 and L2. Interaction of heparan sulfate (HS) with L1 is essential for successful HPV16 entry. Recently, cocrystallization of HPV16 with heparin revealed four distinct binding sites. Here we characterize mutant HPV16 to delineate the role of engagement with HS binding sites during infectious internalization. Site 1 (Lys278, Lys361), which mediates primary binding, is sufficient to trigger an L2 CC, exposing the amino terminus. Site 2 (Lys54, Lys356) and site 3 (Asn57, Lys59, Lys442, Lys443) are engaged following primary attachment and are required for infectious entry. Site 2 mutant particles are efficiently internalized but fail to undergo an L1 CC on the cell surface and subsequent uncoating in the endocytic compartment. After initial attachment to the cell, site 3 mutants undergo L1 and L2 CCs and then accumulate on the extracellular matrix (ECM). We conclude that the induction of CCs following site 1 and site 2 interactions results in reduced affinity for the primary HS binding site(s) on the cell surface, which allows engagement with site 3. Taken together, our findings suggest that HS binding site engagement induces CCs that prepare the virus for downstream events, such as the exposure of secondary binding sites, CCs, transfer to the uptake receptor, and uncoating.


Assuntos
Proteínas do Capsídeo/metabolismo , Heparitina Sulfato/metabolismo , Papillomavirus Humano 16/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Internalização do Vírus , Sítios de Ligação , Proteínas do Capsídeo/genética , Linhagem Celular , Análise Mutacional de DNA , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Oncogênicas Virais/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-23832212

RESUMO

A σ(54)-dependent transcriptional activator FlrC containing an N-terminal regulatory domain, a central AAA(+) domain and a C-terminal DNA-binding domain has been implicated both in flagellar synthesis and enhanced intestinal colonization. FlrC is phosphorylated by the kinase FlrB at the regulatory domain and both nonphosphorylated and phosphorylated states of FlrC seem to be important for its functions. Oligomerization plays a key role in the functions of such transcriptional activators and the AAA(+) σ(54) interaction domain is critical in deciding the oligomerization state. Therefore, to obtain structural insights into FlrC at the atomic level, the AAA(+) σ(54) interaction domain of FlrC was cloned, overexpressed and crystallized using PEG 6000 as precipitant at pH 6.0, and diffraction data were collected to 2.8 Å resolution. Molecular-replacement calculations and subsequent refinement confirmed the presence of a closed heptamer in the asymmetric unit.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Flagelos/metabolismo , Flagelina/química , RNA Polimerase Sigma 54/metabolismo , Proteínas Recombinantes/química , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalização , Cristalografia por Raios X , Flagelina/genética , Flagelina/isolamento & purificação , Flagelina/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Vibrio cholerae/genética
13.
Biochim Biophys Acta ; 1824(7): 882-90, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22709512

RESUMO

Canonical serine protease inhibitors interact with cognate enzymes through the P3-P2' region of the inhibitory loop while its scaffold hardly makes any contact. Neighboring scaffolding residues like Arginines or Asparagine shape-up the inhibitory loop and favor the resynthesis of cleaved scissile bond. However, role of remote scaffolding residues, which are not involved in religation, was not properly explored. Crystal structures of two engineered winged bean chymotrypsin inhibitor (WCI) complexed with Bovine trypsin (BPT) namely L65R-WCI:BPT and F64Y/L65R-WCI:BPT show that the inhibitory loop of these engineered inhibitors are recognized and rigidified properly at the enzyme active site like other strong trypsin inhibitors. Chimeric protein ETI(L)-WCI(S), having a loop of Erythrina caffra Trypsin Inhibitor, ETI on the scaffold of WCI, was previously shown to behave like substrate. Non-canonical structure of the inhibitory loop and its flexibility are attributed to the presence of smaller scaffolding residues which cannot act as barrier to the inhibitory loop like in ETI. Double mutant A76R/L115Y-(ETI(L)-WCI(S)), where the barrier is reintroduced on ETI(L)-WCI(S), shows regaining of inhibitory activity. The structure of A76R/L115Y-(ETI(L)-WCI(S)) along with L65R-WCI:BPT and F64Y/L65R-WCI:BPT demonstrate here that the lost canonical conformation of the inhibitory loop is fully restored and loop flexibility is dramatically reduced. Therefore, residues at the inhibitory loop interact with the enzyme playing the primary role in recognition and binding but scaffolding residues having no direct interaction with the enzyme are crucial for rigidification event and the inhibitory potency. B-factor analysis indicates that the amount of inhibitory loop rigidification varies between different inhibitor families.


Assuntos
Proteínas Mutantes Quiméricas/química , Proteínas de Plantas/química , Tripsina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Bovinos , Cristalografia por Raios X , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes Quiméricas/genética , Mutação , Proteínas de Plantas/genética , Engenharia de Proteínas , Estrutura Secundária de Proteína , Alinhamento de Sequência
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1645-8, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22139188

RESUMO

Chemotaxis and motility greatly influence the infectivity of Vibrio cholerae, although the role of chemotaxis genes in V. cholerae pathogenesis is poorly understood. In contrast to the single copy of CheY found in Escherichia coli and Salmonella typhimurium, four CheYs (CheY1-CheY4) are present in V. cholerae. While insertional disruption of the cheY4 gene results in decreased motility, insertional duplication of this gene increases motility and causes enhanced expression of the two major virulence genes. Additionally, cheY3/cheY4 influences the activation of the transcription factor NF-κB, which triggers the generation of acute inflammatory responses. V. cholerae CheY4 was cloned, overexpressed and purified by Ni-NTA affinity chromatography followed by gel filtration. Crystals of CheY4 grown in space group C2 diffracted to 1.67 Å resolution, with unit-cell parameters a = 94.4, b = 31.9, c = 32.6 Å, ß = 96.5°, whereas crystals grown in space group P3(2)21 diffracted to 1.9 Å resolution, with unit-cell parameters a = b = 56.104, c = 72.283 Å, γ = 120°.


Assuntos
Proteínas de Bactérias/química , Vibrio cholerae/química , Proteínas de Bactérias/isolamento & purificação , Cristalização , Cristalografia por Raios X
15.
J Biol Chem ; 286(4): 2617-24, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21115492

RESUMO

High risk human papillomavirus types 16 (HPV16) and 18 (HPV18) can cause cervical cancer. Efficient infection by HPV16 and HPV18 pseudovirions requires interactions of particles with cell-surface receptor heparan sulfate oligosaccharide. To understand the virus-receptor interactions for HPV infection, we determined the crystal structures of HPV16 and HPV18 capsids bound to the oligosaccharide receptor fragment using oligomeric heparin. The HPV-heparin structures revealed multiple binding sites for the highly negatively charged oligosaccharide fragment on the capsid surface, which is different from previously reported virus-receptor interactions in which a single type of binding pocket is present for a particular receptor. We performed structure-guided mutagenesis to generate mutant viruses, and cell binding and infectivity assays demonstrated the functional role of viral residues involved in heparin binding. These results provide a basis for understanding virus-heparan sulfate receptor interactions critical for HPV infection and for the potential development of inhibitors against HPV infection.


Assuntos
Heparitina Sulfato/química , Papillomavirus Humano 16/química , Papillomavirus Humano 18/química , Sítios de Ligação , Cristalografia por Raios X , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Humanos , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Relação Estrutura-Atividade
16.
Artigo em Inglês | MEDLINE | ID: mdl-20693676

RESUMO

Vibrio cholerae is the aetiological agent of the severe diarrhoeal disease cholera. This highly motile organism uses the processes of motility and chemotaxis to travel and colonize the intestinal epithelium. Chemotaxis in V. cholerae is far more complex than that in Escherichia coli or Salmonella typhimurium, with multiple paralogues of various chemotaxis genes. In contrast to the single copy of the chemotaxis response-regulator protein CheY in E. coli, V. cholerae contains four CheYs (CheY1-CheY4), of which CheY3 is primarily responsible for interacting with the flagellar motor protein FliM, which is one of the major constituents of the ;switch complex' in the flagellar motor. This interaction is the key step that controls flagellar rotation in response to environmental stimuli. CheY3 has been cloned, overexpressed and purified by Ni-NTA affinity chromatography followed by gel filtration. Crystals of CheY3 were grown in space group R3, with a calculated Matthews coefficient of 2.33 A3 Da(-1) (47% solvent content) assuming the presence of one molecule per asymmetric unit.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Vibrio cholerae/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Proteínas de Escherichia coli , Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas Quimiotáticas Aceptoras de Metil
17.
Protein Sci ; 19(3): 593-602, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20073082

RESUMO

For canonical serine protease inhibitors (SPIs), scaffolding spacer residue Asn or Arg religates cleaved scissile peptide bond to offer efficient inhibition. However, several designed "mini-proteins," containing the inhibitory loop and the spacer(s) with trimmed scaffold behave like substrates, indicating that scaffolding region beyond the spacer is also important in the inhibitory process. To understand the loop-scaffold compatibility, we prepared three chimeric proteins ECI(L)-WCI(S), ETI(L)-WCI(S), and STI(L)-WCI(S), where the inhibitory loop of ECI, ETI, and STI is placed on the scaffold of their homolog WCI. Results show that although ECI(L)-WCI(S) and STI(L)-WCI(S) behave like good inhibitors, ETI(L)-WCI(S) behaves like a substrate. That means a set of loop residues (SRLRSAFI), offering strong trypsin inhibition in ETI, act as a substrate when they seat on the scaffold of WCI. Crystal structure of ETI(L)-WCI(S) shows that the inhibitory loop is of noncanonical conformation. We identified three novel scaffolding residues Trp88, Arg74, and Tyr113 in ETI that act as barrier to confine the inhibitory loop to canonical conformation. Absence of this barrier in the scaffold of WCI makes the inhibitory loop flexible in ETI(L)-WCI(S) leading to a loss of canonical conformation, explaining its substrate-like behavior. Incorporation of this barrier back in ETI(L)-WCI(S) through mutations increases its inhibitory power, supporting our proposition. Our study provides structural evidence for the contribution of remote scaffolding residues in the inhibitory process of canonical SPIs. Additionally, we rationalize why the loop-scaffold swapping is not permitted even among the members of highly homologous inhibitors, which might be important in the light of inhibitor design.


Assuntos
Aprotinina/química , Aprotinina/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Sequência de Aminoácidos , Aprotinina/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Análise de Sequência de Proteína , Inibidores de Serina Proteinase/genética
18.
Biochemistry ; 48(22): 4838-45, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19371084

RESUMO

The lymphoid tyrosine phosphatase (LYP), encoded by the PTPN22 gene, recently emerged as an important risk factor and drug target for human autoimmunity. Here we solved the structure of the catalytic domain of LYP, which revealed noticeable differences with previously published structures. The active center with a semi-closed conformation binds a phosphate ion, which may represent an intermediate conformation after dephosphorylation of the substrate but before release of the phosphate product. The structure also revealed an unusual disulfide bond formed between the catalytic Cys and one of the two Cys residues nearby, which is not observed in previously determined structures. Our structural and mutagenesis data suggest that the disulfide bond may play a role in protecting the enzyme from irreversible oxidation. Surprisingly, we found that the two noncatalytic Cys around the active center exert an opposite yin-yang regulation on the catalytic Cys activity. These detailed structural and functional characterizations have provided new insights into autoregulatory mechanisms of LYP function.


Assuntos
Domínio Catalítico , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/genética , Cristalização , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/química , Homeostase/genética , Humanos , Ligação de Hidrogênio , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Dados de Sequência Molecular , Família Multigênica , Oxirredução , Fosfatos/metabolismo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária
19.
Hum Mol Genet ; 18(3): 569-79, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18981062

RESUMO

A gain-of-function R620W polymorphism in the PTPN22 gene, encoding the lymphoid tyrosine phosphatase LYP, has recently emerged as an important risk factor for human autoimmunity. Here we report that another missense substitution (R263Q) within the catalytic domain of LYP leads to reduced phosphatase activity. High-resolution structural analysis revealed the molecular basis for this loss of function. Furthermore, the Q263 variant conferred protection against human systemic lupus erythematosus, reinforcing the proposal that inhibition of LYP activity could be beneficial in human autoimmunity.


Assuntos
Lúpus Eritematoso Sistêmico/genética , Mutação de Sentido Incorreto , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Estudos de Coortes , Humanos , Lúpus Eritematoso Sistêmico/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Polimorfismo Genético , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 22/química , Fatores de Risco , Alinhamento de Sequência , População Branca/genética
20.
Virology ; 376(2): 371-8, 2008 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-18452965

RESUMO

The E6 oncoproteins of the cancer-associated human papillomaviruses (high-risk HPV types) characteristically have a PDZ-binding motif at their extreme carboxy-termini. However, they interact with only some of the PDZ domain-containing proteins in the human proteome and, despite many of these proteins having multiple PDZ domains, they interact specifically through only one of those domains. Previous work has shown that the exact sequence of the C-terminal PDZ-binding motif of E6 affects substrate selection, and recently we have shown that an E6 residue peripheral to the binding motif also contributes to the specificity of binding. Here we show that substrate specificity of the HPV E6 PDZ binding is modulated both by the amino acid residues upstream of the binding domain and by the non-canonical residues within it. Using this data we have begun to construct a scheme of substrate preferences for E6 proteins from different HPV types.


Assuntos
Proteínas Oncogênicas Virais/metabolismo , Domínios PDZ/fisiologia , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Guanilato Quinases , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/terapia , Ligação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA