Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proteins ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953434

RESUMO

The canonical function of glutamyl-tRNA synthetase (GluRS) is to glutamylate tRNAGlu . Yet not all bacterial GluRSs glutamylate tRNAGlu ; many glutamylate both tRNAGlu and tRNAGln , while some glutamylate only tRNAGln and not the cognate substrate tRNAGlu . Understanding the basis of the unique specificity of tRNAGlx is important. Mutational studies have hinted at hotspot residues, both on tRNAGlx and GluRS, which play crucial roles in tRNAGlx -specificity. However, its underlying structural basis remains unexplored. The majority of biochemical studies related to tRNAGlx -specificity have been performed on GluRS from Escherichia coli and other proteobacterial species. However, since the early crystal structures of GluRS and tRNAGlu -bound GluRS were from non-proteobacterial species (Thermus thermophilus), proteobacterial biochemical data have often been interpreted in the context of non-proteobacterial GluRS structures. Marked differences between proteobacterial and non-proteobacterial GluRSs have been demonstrated; therefore, it is important to understand tRNAGlx -specificity vis-a-vis proteobacterial GluRS structures. To this end, we solved the crystal structure of a double mutant GluRS from E. coli. Using the solved structure and several other currently available proteo- and non-proteobacterial GluRS crystal structures, we probed the structural basis of the tRNAGlx -specificity of bacterial GluRSs. Specifically, our analyses suggest a unique role played by the tRNAGlx D-helix contacting loop of GluRS in the modulation of tRNAGln -specificity. While earlier studies have identified functional hotspots on tRNAGlx that control the tRNAGlx -specificity of GluRS, this is the first report of complementary signatures of tRNAGlx -specificity in GluRS.

2.
ChemistryOpen ; 11(6): e202200033, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35642135

RESUMO

We report, for the first time, a detailed crystallographic study of the supramolecular arrangement for a set of zinc(II) Schiff base complexes containing the ligand 2,6-bis((E)-((2-(dimethylamino)ethyl)imino)methyl)-4-R-phenol], where R=methyl/tert-butyl/chloro. The supramolecular study acts as a pre-screening tool for selecting the compartmental ligand R of the Schiff base for effective binding with a targeted protein, bovine serum albumin (BSA). The most stable hexagonal arrangement of the complex [Zn-Me] (R=Me) stabilises the ligand with the highest FMO energy gap (ΔE=4.22 eV) and lowest number of conformations during binding with BSA. In contrast, formation of unstable 3D columnar vertebra for [Zn-Cl] (R=Cl) tend to activate the system with lowest FMO gap (3.75 eV) with highest spontaneity factor in molecular docking. Molecular docking analyses reported in terms of 2D LigPlot+ identified site A, a cleft of domains IB, IIIA and IIIB, as the most probable protein binding site of BSA. Arg144, Glu424, Ser428, Ile455 and Lys114 form the most probable interactions irrespective of the type of compartmental ligands R of the Schiff base whereas Arg185, Glu519, His145, Ile522 act as the differentiating residues with ΔG=-7.3 kcal mol-1 .


Assuntos
Bases de Schiff , Zinco , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Bases de Schiff/química , Bases de Schiff/metabolismo , Soroalbumina Bovina/química
3.
J Inorg Biochem ; 229: 111721, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35033753

RESUMO

Iron is an essential yet toxic micronutrient and its transport across biological membranes is tightly regulated in all living organisms. One such iron transporter, the Ftr-type permeases, is found in both eukaryotic and prokaryotic cells. These Ftr-type transporters are required for iron transport, predicted to form α-helical transmembrane structures, and conserve two ArgGluxxGlu (x = any amino acid) motifs. In the yeast Ftr transporter (Ftr1p), a ferroxidase (Fet3p) is required for iron transport in an oxidation coupled transport step. None of the bacterial Ftr-type transporters (EfeU and FetM from E. coli; cFtr from Campylobacter jejuni; FtrC from Brucella, Bordetella, and Burkholderia spp.) contain a ferroxidase protein. Bioinformatics report predicted periplasmic EfeO and FtrB (from the EfeUOB and FtrABCD systems) as novel cupredoxins. The Cu2+ binding and the ferrous oxidation properties of these proteins are uncharacterized and the other two bacterial Ftr-systems are expressed without any ferroxidase/cupredoxin, leading to controversy about the mode of function of these transporters. Here, we review published data on Ftr-type transporters to gain insight into their functional diversity. Based on original bioinformatics data presented here evolutionary relations between these systems are presented.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Ceruloplasmina/metabolismo , Biologia Computacional , Transporte de Íons/fisiologia , Filogenia , Domínios Proteicos
4.
J Inorg Biochem ; 210: 111162, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32623149

RESUMO

Brucella is a zoonotic pathogen requiring iron for its survival and acquires this metal through the expression of several high-affinity uptake systems. Of these, the newly discovered ferrous iron transporter, FtrABCD, is proposed to take part in ferrous iron uptake. Sequence homology shows that, FtrA, the proposed periplasmic ferrous-binding component, is a P19-type protein (a periplasmic protein from C. jejuni which shows Cu2+ dependent iron affinity). Previous structural and biochemical studies on other P19 systems have established a Cu2+ dependent Mn2+ affinity as well as formation of homodimers for these systems. The Cu2+ coordinating amino acids from these proteins are conserved in Brucella FtrA, hinting towards similar properties. However, there has been no experimental evidence, till date, establishing metal affinities and the possibility of dimer formation by Brucella FtrA. Using wild-type FtrA and Cu2+-binding mutants (H65A, E67A, H118A, and H151A) we investigated the metal affinities, folding stabilities, dimer forming abilities, and the molecular basis of the Cu2+ dependence for this P19-type protein employing homology modeling, analytical gel filtration, calorimetric, and spectroscopic methods. The data reported here confirm a Cu2+-dependent, low-µM Mn2+ (Fe2+ mimic) affinity for the wild-type FtrA. In addition, our data clearly show the loss of Mn2+ affinity, and the formation of less stable protein conformations as a result of mutating these conserved Cu2+-binding residues, indicating the important roles these residues play in producing a native and functional fold of Brucella FtrA.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella/química , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Manganês/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Transição de Fase , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína
5.
Biosci Rep ; 35(2)2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25686371

RESUMO

The putative zinc-binding domain (pZBD) in Escherichia coli glutamyl-tRNA synthetase (GluRS) is known to correctly position the tRNA acceptor arm and modulate the amino acid-binding site. However, its functional role in other bacterial species is not clear since many bacterial GluRSs lack a zinc-binding motif in the pZBD. From experimental studies on pZBD-swapped E. coli GluRS, with Thermosynechoccus elongatus GluRS, Burkholderia thailandensis GluRS and E. coli glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS), we show that E. coli GluRS, containing the zinc-free pZBD of B. thailandensis, is as functional as the zinc-bound wild-type E. coli GluRS, whereas the other constructs, all zinc-bound, show impaired function. A pZBD-tinkered version of E. coli GluRS that still retained Zn-binding capacity, also showed reduced activity. This suggests that zinc is not essential for the pZBD to be functional. From extensive structural and sequence analyses from whole genome database of bacterial GluRS, we further show that in addition to many bacterial GluRS lacking a zinc-binding motif, the pZBD is actually deleted in some bacteria, all containing either glutaminyl-tRNA synthetase (GlnRS) or a second copy of GluRS (GluRS2). Correlation between the absence of pZBD and the occurrence of glutamine amidotransferase CAB (GatCAB) in the genome suggests that the primordial role of the pZBD was to facilitate transamidation of misacylated Glu-tRNA(Gln) via interaction with GatCAB, whereas its role in tRNA(Glu) interaction may be a consequence of the presence of pZBD.


Assuntos
Burkholderia , Proteínas de Escherichia coli , Escherichia coli , Genoma Bacteriano , Glutamato-tRNA Ligase , Zinco/química , Burkholderia/enzimologia , Burkholderia/genética , Bases de Dados Genéticas , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Estrutura Terciária de Proteína
6.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 7): 922-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005090

RESUMO

The nature of interaction between glutamyl-tRNA synthetase (GluRS) and its tRNA substrate is unique in bacteria in that many bacterial GluRS are capable of recognizing two tRNA substrates: tRNAGlu and tRNAGln. To properly understand this distinctive GluRS-tRNA interaction it is important to pursue detailed structure-function studies; however, because of the fact that tRNA-GluRS interaction in bacteria is also associated with phylum-specific idiosyncrasies, the structure-function correlation studies must also be phylum-specific. GluRS from Thermus thermophilus and Escherichia coli, which belong to evolutionarily distant phyla, are the biochemically best characterized. Of these, only the structure of T. thermophilus GluRS is available. To fully unravel the subtleties of tRNAGlu-GluRS interaction in E. coli, a model bacterium that can also be pathogenic, determination of the E. coli GluRS structure is essential. However, previous attempts have failed to crystallize E. coli GluRS. By mapping crystal contacts of a homologous GluRS onto the E. coli GluRS sequence, two surface residues were identified that might have been hindering crystallization attempts. Accordingly, these two residues were mutated and crystallization of the double mutant was attempted. Here, the design, expression, purification and crystallization of an engineered E. coli GluRS in which two surface residues were mutated to optimize crystal contacts are reported.


Assuntos
Escherichia coli/química , Glutamato-tRNA Ligase/química , Ácido Glutâmico/química , Alanina/química , Alanina/genética , Sequência de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Ácido Glutâmico/metabolismo , Cinética , Lisina/química , Lisina/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Engenharia de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato
7.
BMC Evol Biol ; 14: 26, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24521160

RESUMO

BACKGROUND: Evolutionary histories of glutamyl-tRNA synthetase (GluRS) and glutaminyl-tRNA synthetase (GlnRS) in bacteria are convoluted. After the divergence of eubacteria and eukarya, bacterial GluRS glutamylated both tRNAGln and tRNAGlu until GlnRS appeared by horizontal gene transfer (HGT) from eukaryotes or a duplicate copy of GluRS (GluRS2) that only glutamylates tRNAGln appeared. The current understanding is based on limited sequence data and not always compatible with available experimental results. In particular, the origin of GluRS2 is poorly understood. RESULTS: A large database of bacterial GluRS, GlnRS, tRNAGln and the trimeric aminoacyl-tRNA-dependent amidotransferase (gatCAB), constructed from whole genomes by functionally annotating and classifying these enzymes according to their mutual presence and absence in the genome, was analyzed. Phylogenetic analyses showed that the catalytic and the anticodon-binding domains of functional GluRS2 (as in Helicobacter pylori) were independently acquired from evolutionarily distant hosts by HGT. Non-functional GluRS2 (as in Thermotoga maritima), on the other hand, was found to contain an anticodon-binding domain appended to a gene-duplicated catalytic domain. Several genomes were found to possess both GluRS2 and GlnRS, even though they share the common function of aminoacylating tRNAGln. GlnRS was widely distributed among bacterial phyla and although phylogenetic analyses confirmed the origin of most bacterial GlnRS to be through a single HGT from eukarya, many GlnRS sequences also appeared with evolutionarily distant phyla in phylogenetic tree. A GlnRS pseudogene could be identified in Sorangium cellulosum. CONCLUSIONS: Our analysis broadens the current understanding of bacterial GlxRS evolution and highlights the idiosyncratic evolution of GluRS2. Specifically we show that: i) GluRS2 is a chimera of mismatching catalytic and anticodon-binding domains, ii) the appearance of GlnRS and GluRS2 in a single bacterial genome indicating that the evolutionary histories of the two enzymes are distinct, iii) GlnRS is more widespread in bacteria than is believed, iv) bacterial GlnRS appeared both by HGT from eukarya and intra-bacterial HGT, v) presence of GlnRS pseudogene shows that many bacteria could not retain the newly acquired eukaryal GlnRS. The functional annotation of GluRS, without recourse to experiments, performed in this work, demonstrates the inherent and unique advantages of using whole genome over isolated sequence databases.


Assuntos
Aminoacil-tRNA Sintetases/genética , Bactérias/enzimologia , Proteínas de Bactérias/genética , Quimera/genética , Eucariotos/enzimologia , Evolução Molecular , Genoma Bacteriano , Glutamato-tRNA Ligase/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Duplicação Gênica , Transferência Genética Horizontal , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Filogenia , RNA de Transferência de Glutamina/metabolismo
8.
PLoS One ; 8(7): e66581, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861745

RESUMO

Integrase Interactor 1 (INI1/hSNF5) is a component of the hSWI/SNF chromatin remodeling complex. The INI1 gene is either deleted or mutated in rhabdoid cancers like ATRT (Atypical terratoid and rhabdoid tumor). INI1 is also a host factor for HIV-1 replication. INI1 binds DNA non-specifically. However, the mechanism of DNA binding and its biological role are unknown. From agarose gel retardation assay (AGRA), Ni-NTA pull-down and atomic force microscopy (AFM) studies we show that amino acids 105-183 of INI1 comprise the minimal DNA binding domain (DBD). The INI1 DBD is absent in plants and in yeast SNF5. It is present in Caenorhabditis elegans SNF5, Drosophila melanogaster homologue SNR1 and is a highly conserved domain in vertebrates. The DNA binding property of this domain in SNR1, that is only 58% identical to INI1/hSNF5, is conserved. Analytical ultracentrifugation studies of INI1 DBD and INI1 DBD:DNA complexes at different concentrations show that the DBD exists as a monomer at low protein concentration and two molecules of monomer binds one molecule of DNA. At high protein concentration, it exists as a dimer and binds two DNA molecules. Furthermore, isothermal calorimetry (ITC) experiments demonstrate that the DBD monomer binds DNA with a stoichiometry (N) of ∼0.5 and Kd  = 0.94 µM whereas the DBD dimer binds two DNA molecules sequentially with K'd1 = 222 µM and K'd2 = 1.16 µM. Monomeric DBD binding to DNA is enthalpy driven (ΔH = -29.9 KJ/mole). Dimeric DBD binding to DNA is sequential with the first binding event driven by positive entropy (ΔH'1 = 115.7 KJ/mole, TΔS'1 = 136.8 KJ/mole) and the second binding event driven by negative enthalpy (ΔH'2 = -106.3 KJ/mole, TΔS'2 = -75.7 KJ/mole). Our model for INI1 DBD binding to DNA provides new insights into the mechanism of DNA binding by INI1.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , DNA/química , Integrase de HIV/química , Plasmídeos/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Sequência Conservada , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Integrase de HIV/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Plantas/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SMARCB1 , Saccharomyces cerevisiae/química , Termodinâmica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
FEBS Lett ; 586(12): 1724-30, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22584057

RESUMO

Nucleotides whose mutations seriously affect glutamylation efficiency are experimentally known for Escherichia coli tRNA(Glu). However, not much is known about functional hotspots on the complementary enzyme, glutamyl-tRNA synthetase (GluRS). From structural and functional studies on an Arg266Leu mutant of E. coli GluRS, we demonstrate that Arg266 is essential for efficient glutamylation of tRNA(Glu). Consistent with this result, we found that Arg266 is a conserved signature of proteobacterial GluRS. In contrast, most non-proteobacterial GluRS contain Leu, and never Arg, at this position. Our results imply a unique strategy of glutamylation of tRNA(Glu) in proteobacteria under phylum-specific evolutionary compulsions.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Glutamato-tRNA Ligase/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Domínio Catalítico , Sequência Consenso , Estabilidade Enzimática , Proteínas de Escherichia coli/genética , Glutamato-tRNA Ligase/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Ligação Proteica , Estrutura Secundária de Proteína , Proteobactérias/enzimologia , RNA de Transferência de Ácido Glutâmico/química
10.
Biochemistry ; 51(22): 4429-37, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22563625

RESUMO

Molten globule and other disordered states of proteins are now known to play important roles in many cellular processes. From equilibrium unfolding studies of two paralogous proteins and their variants, glutaminyl-tRNA synthetase (GlnRS) and two of its variants [glutamyl-tRNA synthetase (GluRS) and its isolated domains, and a GluRS-GlnRS chimera], we demonstrate that only GlnRS forms a molten globule-like intermediate at low urea concentrations. We demonstrated that a loop in the GlnRS C-terminal anticodon binding domain that promotes communication with the N-terminal domain and indirectly modulates amino acid binding is also responsible for stabilization of the molten globule state. This loop was inserted into GluRS in the eukaryotic branch after the archaea-eukarya split, right around the time when GlnRS evolved. Because of the structural and functional importance of the loop, it is proposed that the insertion of the loop into a putative ancestral GluRS in eukaryotes produced a catalytically active molten globule state. Because of their enhanced dynamic nature, catalytically active molten globules are likely to possess broad substrate specificity. It is further proposed that the putative broader substrate specificity allowed the catalytically active molten globule to accept glutamine in addition to glutamic acid, leading to the evolution of GlnRS.


Assuntos
Aminoacil-tRNA Sintetases/química , Escherichia coli/química , Escherichia coli/enzimologia , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Escherichia coli/genética , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Desdobramento de Proteína , Deleção de Sequência , Ureia/química
11.
FEBS Lett ; 583(12): 2114-20, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19481543

RESUMO

Discrimination of tRNA(Gln) is an integral function of several bacterial glutamyl-tRNA synthetases (GluRS). The origin of the discrimination is thought to arise from unfavorable interactions between tRNA(Gln) and the anticodon-binding domain of GluRS. From experiments on an anticodon-binding domain truncated Escherichia coli (E. coli) GluRS (catalytic domain) and a chimeric protein, constructed from the catalytic domain of E. coli GluRS and the anticodon-binding domain of E. coli glutaminyl-tRNA synthetase (GlnRS), we show that both proteins discriminate against E. coli tRNA(Gln). Our results demonstrate that in addition to the anticodon-binding domain, tRNA(Gln) discriminatory elements may be present in the catalytic domain in E. coli GluRS as well.


Assuntos
Escherichia coli/enzimologia , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , RNA Bacteriano/metabolismo , RNA de Transferência de Glutamina/metabolismo , Anticódon/metabolismo , Sequência de Bases , Domínio Catalítico , Dicroísmo Circular , Primers do DNA/genética , DNA Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glutamato-tRNA Ligase/genética , Cinética , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Especificidade por Substrato , Aminoacilação de RNA de Transferência
12.
Biochem J ; 417(2): 449-55, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18817520

RESUMO

aaRSs (aminoacyl-tRNA synthetases) are multi-domain proteins that have evolved by domain acquisition. The anti-codon binding domain was added to the more ancient catalytic domain during aaRS evolution. Unlike in eukaryotes, the anti-codon binding domains of GluRS (glutamyl-tRNA synthetase) and GlnRS (glutaminyl-tRNA synthetase) in bacteria are structurally distinct. This originates from the unique evolutionary history of GlnRSs. Starting from the catalytic domain, eukaryotic GluRS evolved by acquiring the archaea/eukaryote-specific anti-codon binding domain after branching away from the eubacteria family. Subsequently, eukaryotic GlnRS evolved from GluRS by gene duplication and horizontally transferred to bacteria. In order to study the properties of the putative ancestral GluRS in eukaryotes, formed immediately after acquiring the anti-codon binding domain, we have designed and constructed a chimaeric protein, cGluGlnRS, consisting of the catalytic domain, Ec GluRS (Escherichia coli GluRS), and the anti-codon binding domain of EcGlnRS (E. coli GlnRS). In contrast to the isolated EcN-GluRS, cGluGlnRS showed detectable activity of glutamylation of E. coli tRNA(glu) and was capable of complementing an E. coli ts (temperature-sensitive)-GluRS strain at non-permissive temperatures. Both cGluGlnRS and EcN-GluRS were found to bind E. coli tRNA(glu) with native EcGluRS-like affinity, suggesting that the anticodon-binding domain in cGluGlnRS enhances k(cat) for glutamylation. This was further confirmed from similar experiments with a chimaera between EcN-GluRS and the substrate-binding domain of EcDnaK (E. coli DnaK). We also show that an extended loop, present in the anticodon-binding domains of GlnRSs, is absent in archaeal GluRS, suggesting that the loop was a later addition, generating additional anti-codon discrimination capability in GlnRS as it evolved from GluRS in eukaryotes.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Evolução Molecular , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/classificação , Escherichia coli/enzimologia , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA