Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Nanobiotechnology ; 14: 28, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27066901

RESUMO

A recent review article entitled "Carbon and fullerene nanomaterials in plant system" published in this journal, misinterprets a component of our (published) work on the interactions of carbon nanotubes with plants. In this comment, we provide the rationale to counter this misconstruction.


Assuntos
Agroquímicos/metabolismo , Carbono/metabolismo , Cucurbitaceae/crescimento & desenvolvimento , Fulerenos/metabolismo , Nanoestruturas/química , Solanum lycopersicum/crescimento & desenvolvimento
3.
J Environ Radioact ; 139: 33-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25464039

RESUMO

The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to the paleo times when such plant types were ubiquitous, it would mean that the first plants contributed significantly to pedogenesis and the biogeochemical recycling of even the heaviest and radioactive elements. Such plants may potentially be useful for the phytostabilisation of soil moderately contaminated by the NOHRE. Furthermore where applicable, geochronology may require taking into account the influence of the early plants on the NOHRE distributions.


Assuntos
Elementos Radioativos/análise , Ecossistema , México , Tório/análise , Urânio/análise
4.
N Biotechnol ; 29(1): 156-64, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21664993

RESUMO

Phytoremediation is an environmental biotechnology that seeks to remediate pollution caused by bioaccumulative toxins like copper (Cu). Symbiotic mycorrhizal associations can increase the uptake and delivery of low mobility nutrients and micronutrients to the host plant because they solubilize these substances and increase their catchment area. To analyze the effect of mycorrhizae on the phytoaccumulation of Cu, we studied their ability to solubilize Cu(II) and enhance its absorption by the plant Tagetes erecta L. colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plants were grown for nine weeks in a growth chamber under controlled conditions of temperature, relative humidity and photoperiod. Cu was added in the insoluble form of CuO to simulate the insoluble Cu-O affixed species in soil. The biotic and abiotic parameters of colonization, foliar area, biomass and the pH of leachates were determined as functions of the Cu concentration that was measured in the roots, shoots and leachates by AAS. The results of Cu absorption showed that the colonized plants accumulated more Cu in the roots as well as the whole plant and that both the colonized and non-colonized plants displayed the typical behavior of Cu excluders. Mycorrhizal colonization of the roots resulted in a proliferation of vesicles and this was observed to scale with root tissue Cu concentrations. Also, the G. intraradices-T. erecta system displayed a higher resistance to the toxicity induced by Cu while nonetheless improving the indices of phytoaccumulative yields. These results suggest that G. intraradices possibly accumulates Cu in its vesicles thereby enhancing the Cu tolerance of T. erecta even while increasing root Cu accumulation. The parameters of bioconcentration factor and translocation factor measured in this work suggest that the system T. erecta-G. intraradices can potentially phytostabilize Cu in contaminated soils.


Assuntos
Cobre/metabolismo , Glomeromycota/metabolismo , Poluentes do Solo/metabolismo , Simbiose , Tagetes/metabolismo , Tagetes/microbiologia , Biodegradação Ambiental , Humanos , Concentração de Íons de Hidrogênio , Micorrizas/citologia , Micorrizas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia
5.
Int J Phytoremediation ; 9(3): 207-25, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18246769

RESUMO

The relationships between the concentration of metal in the growth medium, Cs, the concentration of metal absorbed by the plant, Cp, and the total biomass achieved, M, all of which are factors relevant to the efficiency of metal uptake and tolerance by the plant, have been investigated via the physiological response of Brassica juncea seedlings to Ni stress. The factorial growth experiments treated the Ni concentration in agar medium and the diurnal light quanta as independently variable parameters. Observations included the evidence of light enhancement of Ni toxicity in the root, as well as at the whole-plant level. The shoot mass index possibly is an indicator of the amount of shoot metal sequestration in B. juncea, as are the logarithmic variation of Cp with Cs and the power-law dependence of M on Cp. The sum total of these observations indicates that, for the Ni accumulating plant B. juncea, the overall metabolic allocation to either growth or metal tolerance of the plant is important. Neither a rapid biomass increase nor a high metal absorbed concentration favored the removal of high metal mass from the medium. Rather, the plants with a moderate rate of biomass growth and a moderate absorbed metal concentration demonstrated the ability to remove the maximum mass of metal from the medium. The implication of these results as related to the extant model of phyoextraction efficiency is discussed.


Assuntos
Brassica/metabolismo , Luz , Níquel/metabolismo , Plântula/metabolismo , Biomassa , Brassica/crescimento & desenvolvimento , Brassica/efeitos da radiação , Escuridão , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Teoria Quântica , Plântula/efeitos da radiação , Espectrofotometria Atômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA