Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4679, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542024

RESUMO

Excitonic states trapped in harmonic moiré wells of twisted heterobilayers is an intriguing testbed for exploring many-body physics. However, the moiré potential is primarily governed by the twist angle, and its dynamic tuning remains a challenge. Here we demonstrate anharmonic tuning of moiré potential in a WS2/WSe2 heterobilayer through gate voltage and optical power. A gate voltage can result in a local in-plane perturbing field with odd parity around the high-symmetry points. This allows us to simultaneously observe the first (linear) and second (parabolic) order Stark shift for the ground state and first excited state, respectively, of the moiré trapped exciton - an effect opposite to conventional quantum-confined Stark shift. Depending on the degree of confinement, these excitons exhibit up to twenty-fold gate-tunability in the lifetime (100 to 5 ns). Also, exciton localization dependent dipolar repulsion leads to an optical power-induced blueshift of ~ 1 meV/µW - a five-fold enhancement over previous reports.

2.
ACS Nano ; 16(6): 8983-8992, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35679485

RESUMO

Moiré superlattice (mSL)-induced sub-bands in twisted van der Waals homo- and heterostructures govern their optical and electrical properties, rendering additional degrees of freedom such as twist angle. Here, we demonstrate the moiré superlattice effects on the intralayer excitons and trions in a twisted bilayer of MoS2 of H-type stacking at marginal twist angles. We identify the emissions from localized and delocalized sub-bands of intralayer moiré excitons and show their electrical modulation by the corresponding trion formation. The electrical control of the oscillator strength of the moiré excitons also results in the strong tunability of resonant Raman scattering. We find that the gate-induced doping significantly modulates the electronic moiré potential; however, leaves the excitonic moiré confinement unaltered. This effect, coupled with variable moiré trap filling by tuning the optical excitation density, allows us to delineate the different phases of localized and delocalized moiré trions. We demonstrate that the moiré excitons exhibit strong valley coherence that changes in a striking nonmonotonic W-shape with gating due to motional narrowing. These observations from the simultaneous electrostatic control of quasiparticle-dependent moiré potential will lead to exciting effects of tunable many-body phenomena in moiré superlattices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA