Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Metabolites ; 14(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38668371

RESUMO

Sugarcane (Saccharum spp. hybrids) and its processed products have supported local industries such as those in the Nansei Islands, Japan. To improve the sugarcane quality and productivity, breeders select better clones by evaluating agronomic characteristics, such as commercially recoverable sugar and cane yield. However, other constituents in sugarcane remain largely unutilized in sugarcane breeding programs. This study aims to establish a data-driven approach to analyze agronomic characteristics from breeding programs. This approach also determines a correlation between agronomic characteristics and free amino acid composition to make breeding programs more efficient. Sugarcane was sampled in clones in the later stage of breeding selection and cultivars from experimental fields on Tanegashima Island. Principal component analysis and hierarchical cluster analysis using agronomic characteristics revealed the diversity and variability of each sample, and the data-driven approach classified cultivars and clones into three groups based on yield type. A comparison of free amino acid constituents between these groups revealed significant differences in amino acids such as asparagine and glutamine. This approach dealing with a large volume of data on agronomic characteristics will be useful for assessing the characteristics of potential clones under selection and accelerating breeding programs.

2.
Metabolites ; 12(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144266

RESUMO

Sugarcane is essential for global sugar production and its compressed juice is a key raw material for industrial products. Sugarcane juice includes various metabolites with abundances and compositional balances influencing product qualities and functionalities. Therefore, understanding the characteristic features of the sugarcane metabolome is important. However, sugarcane compositional variability and stability, even in pretreatment processes for nuclear magnetic resonance (NMR)-based metabolomic studies, remains elusive. The objective of this study is to evaluate sugarcane juice metabolomic variability affected by centrifugation, filtration, and thermal pretreatments, as well as the time-course changes for determining optimal conditions for NMR-based metabolomic approach. The pretreatment processes left the metabolomic compositions unchanged, indicating that these pretreatments are compatible with one another and the studied metabolomes are comparable. The thermal processing provided stability to the metabolome for more than 32 h at room temperature. Based on the determined analytical conditions, we conducted an NMR-based metabolomic study to discriminate the differences in the harvest period and allowed for successfully identifying the characteristic metabolome. Our findings denote that NMR-based sugarcane metabolomics enable us to provide an opportunity to collect a massive amount of data upon collaboration between multiple researchers, resulting in the rapid construction of useful databases for both research purposes and industrial use.

3.
BMC Chem ; 15(1): 13, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33610164

RESUMO

Nuclear magnetic resonance (NMR)-based relaxometry is widely used in various fields of research because of its advantages such as simple sample preparation, easy handling, and relatively low cost compared with metabolomics approaches. However, there have been no reports on the application of the T2 relaxation curves in metabolomics studies involving the evaluation of metabolic mixtures, such as geographical origin determination and feature extraction by pattern recognition and data mining. In this study, we describe a data mining method for relaxometric data (i.e., relaxometric learning). This method is based on a machine learning algorithm supported by the analytical framework optimized for the relaxation curve analyses. In the analytical framework, we incorporated a variable optimization approach and bootstrap resampling-based matrixing to enhance the classification performance and balance the sample size between groups, respectively. The relaxometric learning enabled the extraction of features related to the physical properties of fish muscle and the determination of the geographical origin of the fish by improving the classification performance. Our results suggest that relaxometric learning is a powerful and versatile alternative to conventional metabolomics approaches for evaluating fleshiness of chemical mixtures in food and for other biological and chemical research requiring a nondestructive, cost-effective, and time-saving method.

4.
Sci Rep ; 11(1): 3766, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580151

RESUMO

Functional diversity rather than species richness is critical for the understanding of ecological patterns and processes. This study aimed to develop novel integrated analytical strategies for the functional characterization of fish diversity based on the quantification, prediction and integration of the chemical and physical features in fish muscles. Machine learning models with an improved random forest algorithm applied on 1867 muscle nuclear magnetic resonance spectra belonging to 249 fish species successfully predicted the mobility patterns of fishes into four categories (migratory, territorial, rockfish, and demersal) with accuracies of 90.3-95.4%. Markov blanket-based feature selection method with an ecological-chemical-physical integrated network based on the Bayesian network inference algorithm highlighted the importance of nitrogen metabolism, which is critical for environmental adaptability of fishes in nutrient-rich environments, in the functional characterization of fish biodiversity. Our study provides valuable information and analytical strategies for fish home-range assessment on the basis of the chemical and physical characterization of fish muscle, which can serve as an ecological indicator for fish ecotyping and human impact monitoring.


Assuntos
Peixes/genética , Peixes/fisiologia , Animais , Teorema de Bayes , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Ecótipo , Interação Gene-Ambiente , Aprendizado de Máquina , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Densidade Demográfica , Rios , Especificidade da Espécie
5.
Proc Natl Acad Sci U S A ; 117(25): 14552-14560, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513689

RESUMO

Both inorganic fertilizer inputs and crop yields have increased globally, with the concurrent increase in the pollution of water bodies due to nitrogen leaching from soils. Designing agroecosystems that are environmentally friendly is urgently required. Since agroecosystems are highly complex and consist of entangled webs of interactions between plants, microbes, and soils, identifying critical components in crop production remain elusive. To understand the network structure in agroecosystems engineered by several farming methods, including environmentally friendly soil solarization, we utilized a multiomics approach on a field planted with Brassica rapa We found that the soil solarization increased plant shoot biomass irrespective of the type of fertilizer applied. Our multiomics and integrated informatics revealed complex interactions in the agroecosystem showing multiple network modules represented by plant traits heterogeneously associated with soil metabolites, minerals, and microbes. Unexpectedly, we identified soil organic nitrogen induced by soil solarization as one of the key components to increase crop yield. A germ-free plant in vitro assay and a pot experiment using arable soils confirmed that specific organic nitrogen, namely alanine and choline, directly increased plant biomass by acting as a nitrogen source and a biologically active compound. Thus, our study provides evidence at the agroecosystem level that organic nitrogen plays a key role in plant growth.


Assuntos
Brassica rapa/crescimento & desenvolvimento , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Solo/química , Alanina/química , Alanina/metabolismo , Biomassa , Brassica rapa/metabolismo , Colina/química , Colina/metabolismo , Produtos Agrícolas/metabolismo , Conjuntos de Dados como Assunto , Redes e Vias Metabólicas/efeitos da radiação , Metabolômica , Microbiota/fisiologia , Microbiota/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Rizosfera , Microbiologia do Solo , Luz Solar
6.
Molecules ; 25(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340308

RESUMO

Conventional proton nuclear magnetic resonance (1H-NMR) has been widely used for identification and quantification of small molecular components in food. However, identification of major soluble macromolecular components from conventional 1H-NMR spectra is difficult. This is because the baseline appearance is masked by the dense and high-intensity signals from small molecular components present in the sample mixtures. In this study, we introduced an integrated analytical strategy based on the combination of additional measurement using a diffusion filter, covariation peak separation, and matrix decomposition in a small-scale training dataset. This strategy is aimed to extract signal profiles of soluble macromolecular components from conventional 1H-NMR spectral data in a large-scale dataset without the requirement of re-measurement. We applied this method to the conventional 1H-NMR spectra of water-soluble fish muscle extracts and investigated the distribution characteristics of fish diversity and muscle soluble macromolecular components, such as lipids and collagens. We identified a cluster of fish species with low content of lipids and high content of collagens in muscle, which showed great potential for the development of functional foods. Because this mechanical data processing method requires additional measurement of only a small-scale training dataset without special sample pretreatment, it should be immediately applicable to extract macromolecular signals from accumulated conventional 1H-NMR databases of other complex gelatinous mixtures in foods.


Assuntos
Peixes , Substâncias Macromoleculares , Músculos/química , Espectroscopia de Prótons por Ressonância Magnética , Animais , Bases de Dados Factuais , Substâncias Macromoleculares/análise , Substâncias Macromoleculares/química , Solubilidade
7.
Chem Sci ; 9(43): 8213-8220, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30542569

RESUMO

Various chemical shift predictive methodologies have been studied and developed, but there remains the problem of prediction accuracy. Assigning the NMR signals of metabolic mixtures requires high predictive performance owing to the complexity of the signals. Here we propose a new predictive tool that combines quantum chemistry and machine learning. A scaling factor as the objective variable to correct the errors of 2355 theoretical chemical shifts was optimized by exploring 91 machine learning algorithms and using the partial structure of 150 compounds as explanatory variables. The optimal predictive model gave RMSDs between experimental and predicted chemical shifts of 0.2177 ppm for δ 1H and 3.3261 ppm for δ 13C in the test data; thus, better accuracy was achieved compared with existing empirical and quantum chemical methods. The utility of the predictive model was demonstrated by applying it to assignments of experimental NMR signals of a complex metabolic mixture.

8.
Anal Chim Acta ; 1037: 230-236, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30292297

RESUMO

Deep neural network (DNN) is a useful machine learning approach, although its applicability to metabolomics studies has rarely been explored. Here we describe the development of an ensemble DNN (EDNN) algorithm and its applicability to metabolomics studies. As a model case, the developed EDNN approach was applied to metabolomics data of various fish species collected from Japan coastal and estuarine environments for evaluation of a regression performance compared with conventional DNN, random forest, and support vector machine algorithms. This study also revealed that the metabolic profiles of fish muscles were correlated with fish size (growth) in a species-dependent manner. The performance of EDNN regression for fish size based on metabolic profiles was superior to that of DNN, random forest, and support vector machine algorithms. The EDNN approach, therefore, should be helpful for analyses of regression and concerns pertaining to classification in metabolomics studies.


Assuntos
Aprendizado Profundo , Metabolômica/métodos
9.
mSphere ; 3(5)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333180

RESUMO

Periodontal disease induced by periodontopathic bacteria like Porphyromonas gingivalis is demonstrated to increase the risk of metabolic, inflammatory, and autoimmune disorders. Although precise mechanisms for this connection have not been elucidated, we have proposed mechanisms by which orally administered periodontopathic bacteria might induce changes in gut microbiota composition, barrier function, and immune system, resulting in an increased risk of diseases characterized by low-grade systemic inflammation. Accumulating evidence suggests a profound effect of altered gut metabolite profiles on overall host health. Therefore, it is possible that P. gingivalis can affect these metabolites. To test this, C57BL/6 mice were administered with P. gingivalis W83 orally twice a week for 5 weeks and compared with sham-inoculated mice. The gut microbial communities were analyzed by pyrosequencing the 16S rRNA genes. Inferred metagenomic analysis was used to determine the relative abundance of KEGG pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance (NMR)-based metabolomics coupled with multivariate statistical analyses. Oral administration of P. gingivalis induced a change in gut microbiota composition. The distributions of metabolic pathways differed between the two groups, including those related to amino acid metabolism and, in particular, the genes for phenylalanine, tyrosine, and tryptophan biosynthesis. Also, alanine, glutamine, histidine, tyrosine, and phenylalanine were significantly increased in the serum of P. gingivalis-administered mice. In addition to altering immune modulation and gut barrier function, oral administration of P. gingivalis affects the host's metabolic profile. This supports our hypothesis regarding a gut-mediated systemic pathology resulting from periodontal disease.IMPORTANCE Increasing evidence suggest that alterations of the gut microbiome underlie metabolic disease pathology by modulating gut metabolite profiles. We have shown that orally administered Porphyromonas gingivalis, a representative periodontopathic bacterium, alters the gut microbiome; that may be a novel mechanism by which periodontitis increases the risk of various diseases. Given the association between periodontal disease and metabolic diseases, it is possible that P. gingivalis can affect the metabolites. Metabolite profiling analysis demonstrated that several amino acids related to a risk of developing diabetes and obesity were elevated in P. gingivalis-administered mice. Our results revealed that the increased risk of various diseases by P. gingivalis might be mediated at least in part by alteration of metabolic profiles. The findings should add new insights into potential links between periodontal disease and systemic disease for investigators in periodontal disease and also for investigators in the field of other diseases, such as metabolic diseases.


Assuntos
Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Doenças Metabólicas/microbiologia , Doenças Periodontais/complicações , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/patogenicidade , Administração Oral , Animais , Fezes/microbiologia , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Soro/metabolismo , Estatísticas não Paramétricas
10.
Sci Total Environ ; 636: 12-19, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29702398

RESUMO

There is an increasing need for assessing aquatic ecosystems that are globally endangered. Since aquatic ecosystems are complex, integrated consideration of multiple factors utilizing omics technologies can help us better understand aquatic ecosystems. An integrated strategy linking three analytical (machine learning, factor mapping, and forecast-error-variance decomposition) approaches for extracting the features of surface water from datasets comprising ions, metabolites, and microorganisms is proposed herein. The three developed approaches can be employed for diverse datasets of sample sizes and experimentally analyzed factors. The three approaches are applied to explore the features of bay water surrounding Odaiba, Tokyo, Japan, as a case study. Firstly, the machine learning approach separated 681 surface water samples within Japan into three clusters, categorizing Odaiba water into seawater with relatively low inorganic ions, including Mg, Ba, and B. Secondly, the factor mapping approach illustrated Odaiba water samples from the summer as rich in multiple amino acids and some other metabolites and poor in inorganic ions relative to other seasons based on their seasonal dynamics. Finally, forecast-error-variance decomposition using vector autoregressive models indicated that a type of microalgae (Raphidophyceae) grows in close correlation with alanine, succinic acid, and valine on filters and with isobutyric acid and 4-hydroxybenzoic acid in filtrate, Ba, and average wind speed. Our integrated strategy can be used to examine many biological, chemical, and environmental physical factors to analyze surface water.


Assuntos
Ecossistema , Monitoramento Ambiental , Plâncton/crescimento & desenvolvimento , Água do Mar/química , Japão , Estações do Ano , Tóquio
11.
Sci Rep ; 8(1): 3426, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467421

RESUMO

Computer-based technological innovation provides advancements in sophisticated and diverse analytical instruments, enabling massive amounts of data collection with relative ease. This is accompanied by a fast-growing demand for technological progress in data mining methods for analysis of big data derived from chemical and biological systems. From this perspective, use of a general "linear" multivariate analysis alone limits interpretations due to "non-linear" variations in metabolic data from living organisms. Here we describe a kernel principal component analysis (KPCA)-incorporated analytical approach for extracting useful information from metabolic profiling data. To overcome the limitation of important variable (metabolite) determinations, we incorporated a random forest conditional variable importance measure into our KPCA-based analytical approach to demonstrate the relative importance of metabolites. Using a market basket analysis, hippurate, the most important variable detected in the importance measure, was associated with high levels of some vitamins and minerals present in foods eaten the previous day, suggesting a relationship between increased hippurate and intake of a wide variety of vegetables and fruits. Therefore, the KPCA-incorporated analytical approach described herein enabled us to capture input-output responses, and should be useful not only for metabolic profiling but also for profiling in other areas of biological and environmental systems.


Assuntos
Dieta , Aprendizado de Máquina , Metaboloma , Metabolômica/métodos , Análise de Componente Principal , Mineração de Dados , Ingestão de Alimentos , Hipuratos/metabolismo , Humanos
12.
Sci Rep ; 8(1): 3478, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472553

RESUMO

Data-driven approaches were applied to investigate the temporal and spatial changes of 1,022 individuals of wild yellowfin goby and its potential interaction with the estuarine environment in Japan. Nuclear magnetic resonance (NMR)-based metabolomics revealed that growth stage is a primary factor affecting muscle metabolism. Then, the metabolic, elemental and microbial profiles of the pooled samples generated according to either the same habitat or sampling season as well as the river water and sediment samples from their habitats were measured using NMR spectra, inductively coupled plasma optical emission spectrometry and next-generation 16 S rRNA gene sequencing. Hidden interactions in the integrated datasets such as the potential role of intestinal bacteria in the control of spawning migration, essential amino acids and fatty acids synthesis in wild yellowfin goby were further extracted using correlation clustering and market basket analysis-generated networks. Importantly, our systematic analysis of both the seasonal and latitudinal variations in metabolome, ionome and microbiome of wild yellowfin goby pointed out that the environmental factors such as the temperature play important roles in regulating the body homeostasis of wild fish.


Assuntos
Ecossistema , Metaboloma/genética , Perciformes/genética , Biologia de Sistemas , Animais , Água Doce , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase/genética , Espectroscopia de Ressonância Magnética , RNA Ribossômico 16S/genética
13.
Prog Nucl Magn Reson Spectrosc ; 104: 56-88, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29405981

RESUMO

A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches.


Assuntos
Biota/fisiologia , Ecologia , Ecossistema , Homeostase/fisiologia , Metabolômica , Animais , Bases de Dados Factuais , Humanos , Aprendizado de Máquina , Análise Multivariada , Ressonância Magnética Nuclear Biomolecular
14.
Anal Chem ; 90(3): 1805-1810, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29278490

RESUMO

Deep neural networks (DNNs), which are kinds of the machine learning approaches, are powerful tools for analyzing big sets of data derived from biological and environmental systems. However, DNNs are not applicable to metabolomics studies because they have difficulty in identifying contribution factors, e.g., biomarkers, in constructed classification and regression models. In this paper, we describe an improved DNN-based analytical approach that incorporates an importance estimation for each variable using a mean decrease accuracy (MDA) calculation, which is based on a permutation algorithm; this approach is called DNN-MDA. The performance of the DNN-MDA approach was evaluated using a data set of metabolic profiles derived from yellowfin goby that lived in various rivers throughout Japan. Its performance was compared with that of conventional multivariate and machine learning methods, and the DNN-MDA approach was found to have the best classification accuracy (97.8%) among the examined methods. In addition to this, the DNN-MDA approach facilitated the identification of important variables such as trimethylamine N-oxide, inosinic acid, and glycine, which were characteristic metabolites that contributed to the discrimination of the geographical differences between fish caught in the Kanto region and those caught in other regions. As a result, the DNN-MDA approach is a useful and powerful tool for determining the geographical origins of specimens and identifying their biomarkers in metabolomics studies that are conducted in biological and environmental systems.


Assuntos
Metabolômica/métodos , Redes Neurais de Computação , Algoritmos , Animais , Aprendizado de Máquina , Perciformes/classificação , Perciformes/metabolismo
15.
Nutrients ; 9(12)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29211010

RESUMO

The imbalance of gut microbiota is known to be associated with inflammatory bowel disease, but it remains unknown whether dysbiosis is a cause or consequence of chronic gut inflammation. In order to investigate the effects of gut inflammation on microbiota and metabolome, the sequential changes in gut microbiota and metabolites from the onset of colitis to the recovery in dextran sulfate sodium-induced colitic mice were characterized by using meta 16S rRNA sequencing and proton nuclear magnetic resonance (¹H-NMR) analysis. Mice in the colitis progression phase showed the transient expansions of two bacterial families including Bacteroidaceae and Enterobacteriaceae and the depletion of major gut commensal bacteria belonging to the uncultured Bacteroidales family S24-7, Rikenellaceae, Lachnospiraceae, and Ruminococcaceae. After the initiation of the recovery, commensal Lactobacillus members promptly predominated in gut while other normally abundant bacteria excluding the Erysipelotrichaceae remained diminished. Furthermore, ¹H-NMR analysis revealed characteristic fluctuations in fecal levels of organic acids (lactate and succinate) associated with the disease states. In conclusion, acute intestinal inflammation is a perturbation factor of gut microbiota but alters the intestinal environments suitable for Lactobacillus members.


Assuntos
Bactérias/classificação , Fezes/microbiologia , Microbioma Gastrointestinal , Inflamação/induzido quimicamente , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Inflamação/terapia , Camundongos , RNA Ribossômico 16S/genética
16.
Nutrients ; 9(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194366

RESUMO

Prebiotics and probiotics strongly impact the gut ecosystem by changing the composition and/or metabolism of the microbiota to improve the health of the host. However, the composition of the microbiota constantly changes due to the intake of daily diet. This shift in the microbiota composition has a considerable impact; however, non-pre/probiotic foods that have a low impact are ignored because of the lack of a highly sensitive evaluation method. We performed comprehensive acquisition of data using existing measurements (nuclear magnetic resonance, next-generation DNA sequencing, and inductively coupled plasma-optical emission spectroscopy) and analyses based on a combination of machine learning and network visualization, which extracted important factors by the Random Forest approach, and applied these factors to a network module. We used two pteridophytes, Pteridium aquilinum and Matteuccia struthiopteris, for the representative daily diet. This novel analytical method could detect the impact of a small but significant shift associated with Matteuccia struthiopteris but not Pteridium aquilinum intake, using the functional network module. In this study, we proposed a novel method that is useful to explore a new valuable food to improve the health of the host as pre/probiotics.


Assuntos
Gleiquênias/química , Alimentos , Trato Gastrointestinal/fisiologia , Aprendizado de Máquina , Modelos Biológicos , Humanos , Masculino , Microbiota , Prebióticos , Probióticos
17.
Int Immunol ; 29(10): 471-478, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29186424

RESUMO

Nasopharynx-associated lymphoid tissue (NALT) is one of the major constituents of the mucosa-associated lymphoid tissue (MALT), and has the ability to induce antigen-specific immune responses. However, the molecular mechanisms responsible for antigen uptake from the nasal cavity into the NALT remain largely unknown. Immunohistochemical analysis showed that CCL9 and CCL20 were co-localized with glycoprotein 2 (GP2) in the epithelium covering NALT, suggesting the existence of M cells in NALT. In analogy with the reduced number of Peyer's patch M cells in CCR6-deficient mice, the number of NALT M cells was drastically decreased in CCR6-deficient mice compared with the wild-type mice. Translocation of nasally administered Salmonella enterica serovar Typhimurium into NALT via NALT M cells was impaired in CCR6-deficient mice, whereas S. Typhimurium demonstrated consistent co-localization with NALT M cells in wild-type mice. When wild-type mice were nasally administered with an attenuated vaccine strain of S. Typhimurium, the mice were protected from a subsequent challenge with wild-type S. Typhimurium. Antigen-specific fecal and nasal IgA was detected after nasal immunization with the attenuated vaccine strain of S. Typhimurium only in wild-type mice but not in CCR6-deficient mice. Taken together, these observations demonstrate that NALT M cells are important as a first line of defense against infection by enabling activation of the common mucosal immune system (CMIS).


Assuntos
Células Epiteliais/imunologia , Imunidade nas Mucosas/imunologia , Tecido Linfoide/imunologia , Nasofaringe/imunologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
18.
Metabolites ; 7(4)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048351

RESUMO

The transformation of organic substrates by heterotrophic bacteria in aquatic environments constitutes one of the key processes in global material cycles. The development of procedures that would enable us to track the wide range of organic compounds transformed by aquatic bacteria would greatly improve our understanding of material cycles. In this study, we examined the applicability of nuclear magnetic resonance spectroscopy coupled with stable-isotope labeling to the investigation of metabolite transformation in a natural aquatic bacterial community. The addition of a model substrate (13C6-glucose) to a coastal seawater sample and subsequent incubation resulted in the detection of >200 peaks and the assignment of 22 metabolites from various chemical classes, including amino acids, dipeptides, organic acids, nucleosides, nucleobases, and amino alcohols, which had been identified as transformed from the 13C6-glucose. Additional experiments revealed large variability in metabolite transformation and the key compounds, showing the bacterial accumulation of glutamate over the incubation period, and that of 3-hydroxybutyrate with increasing concentrations of 13C6-glucose added. These results suggest the potential ability of our approach to track substrate transformation in aquatic bacterial communities. Further applications of this procedure may provide substantial insights into the metabolite dynamics in aquatic environments.

19.
Sci Rep ; 6: 28011, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27313139

RESUMO

Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.


Assuntos
Biomassa , Microbiologia do Solo , Solo/química , Botsuana , Celulose/metabolismo , Carvão Vegetal/química , Jatropha/química , Jatropha/crescimento & desenvolvimento , Jatropha/metabolismo , Lignina/metabolismo , Análise de Componente Principal , Espectrofotometria Atômica
20.
Metabolites ; 6(1)2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26828528

RESUMO

Marine biomass including fishery products are precious protein resources for human foods and are an alternative to livestock animals in order to reduce the virtual water problem. However, a large amount of marine waste can be generated from fishery products and it is not currently recycled. We evaluated the metabolism of digested marine waste using integrated analytical methods, under anaerobic conditions and the fertilization of abandoned agricultural soils. Dynamics of fish waste digestion revealed that samples of meat and bony parts had similar dynamics under anaerobic conditions in spite of large chemical variations in input marine wastes. Abandoned agricultural soils fertilized with fish waste accumulated some amino acids derived from fish waste, and accumulation of l-arginine and l-glutamine were higher in plant seedlings. Therefore, we have proposed an analytical method to visualize metabolic dynamics for recycling of fishery waste processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA