Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 33(23): 2814-28, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361605

RESUMO

IκBα resides in the cytosol where it retains the inducible transcription factor NF-κB. We show that IκBα also localises to the outer mitochondrial membrane (OMM) to inhibit apoptosis. This effect is especially pronounced in tumour cells with constitutively active NF-κB that accumulate high amounts of mitochondrial IκBα as a NF-κB target gene. 3T3 IκBα(-/-) cells also become protected from apoptosis when IκBα is specifically reconstituted at the OMM. Using various IκBα mutants, we demonstrate that apoptosis inhibition and NF-κB inhibition can be functionally and structurally separated. At mitochondria, IκBα stabilises the complex of VDAC1 and hexokinase II (HKII), thereby preventing Bax recruitment to VDAC1 and the release of cytochrome c for apoptosis induction. When IκBα is reduced in tumour cells with constitutively active NF-κB, they show an enhanced response to anticancer treatment in an in vivo xenograft tumour model. Our results reveal the unexpected activity of IκBα in guarding the integrity of the OMM against apoptosis induction and open possibilities for more specific interference in tumours with deregulated NF-κB.


Assuntos
Apoptose/fisiologia , Proteínas I-kappa B/metabolismo , Membranas Mitocondriais/fisiologia , Modelos Biológicos , NF-kappa B/metabolismo , Animais , Western Blotting , Linhagem Celular , Citocromos c/metabolismo , Feminino , Citometria de Fluxo , Hexoquinase/metabolismo , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Membranas Mitocondriais/metabolismo , Inibidor de NF-kappaB alfa , Oligonucleotídeos/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Cell Sci ; 127(Pt 8): 1816-28, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24522192

RESUMO

The permeability transition pore (PT-pore) mediates cell death through the dissipation of the mitochondrial membrane potential (ΔΨm). Because the exact composition of the PT-pore is controversial, it is crucial to investigate the actual molecular constituents and regulators of this complex. We found that mitochondrial creatine kinase-1 (CKMT1) is a universal and functionally necessary gatekeeper of the PT-pore, as its depletion induces mitochondrial depolarization and apoptotic cell death. This can be inhibited efficiently by bongkrekic acid, a compound that is widely used to inhibit the PT-pore. However, when the 'classical' PT-pore subunits cyclophilin D and VDAC1 are pharmacologically inhibited or their expression levels reduced, mitochondrial depolarization by CKMT1 depletion remains unaffected. At later stages of drug-induced apoptosis, CKMT1 levels are reduced, suggesting that CKMT1 downregulation acts to reinforce the commitment of cells to apoptosis. A novel high-molecular-mass CKMT1 complex that is distinct from the known CKMT1 octamer disintegrates upon treatment with cytotoxic drugs, concomitant with mitochondrial depolarization. Our study provides evidence that CKMT1 is a key regulator of the PT-pore through a complex that is distinct from the classical PT-pore.


Assuntos
Creatina Quinase/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Apoptose , Ácido Bongcréquico/farmacologia , Caspase 9/metabolismo , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Permeabilidade , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Ubiquitinação , Canal de Ânion 1 Dependente de Voltagem/metabolismo
3.
Biochim Biophys Acta ; 1833(12): 2844-2855, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23880370

RESUMO

RNA interference (RNAi) is an essential method in molecular biology to reduce the expression of target genes and thereby determine their function. Since this tool is known to also have unspecific effects, control experiments are needed, chiefly among them the exclusion of off-target effects and the reconstitution of the genes' expression for the rescue of the cellular RNAi effects. We show here that the knock-down of the mitochondrial creatine kinase-1 (CKMT1) by RNA interference causes the dissipation of the mitochondrial membrane potential ΔΨm. This was accomplished with 11 different RNAi constructs designed to target 7 distinct exons as well as exon/intron junctions making unspecific off-target effects unlikely. However, all our attempts failed to rescue human cells from ΔΨm dissipation by the expression of CKMT1 alleles not targeted by RNAi. This included the transient and stable expression of the murine CKMT1 homologue, the expression of human codon usage-modified alleles, the transfection of a novel splice-isoform of CKMT1, and even the introduction of a human genomic clone for CKMT1 with codon usage changes. Our results indicate that while off-target effects of RNA interference can easily be addressed, the rescue of the knock-down phenotype is not necessarily achievable.


Assuntos
Creatina Quinase/metabolismo , Potencial da Membrana Mitocondrial , Interferência de RNA , Processamento Alternativo/genética , Animais , Sequência de Bases , Códon/genética , Técnicas de Silenciamento de Genes , Genoma Humano/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Fenótipo , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes
4.
Biochim Biophys Acta ; 1823(8): 1353-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22659130

RESUMO

Dynamic ubiquitination impacts on the degradation of proteins by the proteasome as well as on their effects as signalling factors. Of the many cellular responses that are regulated by changes in ubiquitination, apoptosis has garnered special attention. We have found that USP2a and USP2c, two isoforms of the ubiquitin-specific protease USP2, cause cell death upon ectopic expression. We show that both USP2 isoforms can control the ubiquitination status of many proteins but from a panel of potential targets only the protein level of RIP1 was increased by these enzymes. This effect is responsible for the activity of USP2a and USP2c to cause cell death. Both enzymes likewise de-ubiquitinate TRAF2, a ubiquitin-ligase in the TNFR1 complex. Whilst this and the similar sub-cellular localisations of both enzyme isoforms indicate a substantial overlap of activities, inactivation by RNAi revealed that only the knock-down of USP2c resulted in apoptosis, whilst targeting USP2a did not have any consequence on the cells' survival. Consequently, we focussed our studies on USP2a and found that TRAF2 inhibits USP2a's effect on K48- but not on K63-linked ubiquitin chains. Hence, the ratio between USP2a and TRAF2 protein levels determines the cells' sensitivity to cell death.


Assuntos
Apoptose , Endopeptidases/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Endopeptidases/genética , Endopeptidases/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Camundongos , Estabilidade Proteica , Transporte Proteico , Proteólise , Interferência de RNA , Fator 2 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Ubiquitina Tiolesterase , Proteínas Ubiquitinadas/metabolismo
5.
Cancer Res ; 71(13): 4412-22, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21571862

RESUMO

Ovarian cancer frequently acquires resistance to platinum chemotherapy, representing a major challenge for improving patient survival. Recent work suggests that resistant clones exist within a larger drug-sensitive cell population prior to chemotherapy, implying that resistance is selected for rather than generated by treatment. We sought to compare clinically derived, intrapatient paired models of initial platinum response and subsequent resistant relapse to define molecular determinants of evolved resistance. Transcriptional analysis of a matched cell line series from three patients with high-grade serous ovarian cancer before and after development of clinical platinum resistance (PEO1/PEO4/PEO6, PEA1/PEA2, PEO14/PEO23) identified 91 up- and 126 downregulated genes common to acquired resistance. Significantly enhanced apoptotic response to platinum treatment in resistant cells was observed following knockdown of histone deacetylase (HDAC) 4, FOLR2, PIK3R1, or STAT1 (P < 0.05). Interestingly, HDAC4 and STAT1 were found to physically interact. Acetyl-STAT1 was detected in platinum-sensitive cells but not in HDAC4 overexpressing platinum-resistant cells from the same patient. In resistant cells, STAT1 phosphorylation/nuclear translocation was seen following platinum exposure, whereas silencing of HDAC4 increased acetyl-STAT1 levels, prevented platinum-induced STAT1 activation, and restored cisplatin sensitivity. Conversely, matched sensitive cells were refractory to STAT1 phosphorylation on platinum treatment. Analysis of 16 paired tumor biopsies taken before and after development of clinical platinum resistance showed significantly increased HDAC4 expression in resistant tumors [n = 7 of 16 (44%); P = 0.04]. Therefore, clinical selection of HDAC4-overexpressing tumor cells upon exposure to chemotherapy promotes STAT1 deacetylation and cancer cell survival. Together, our findings identify HDAC4 as a novel, therapeutically tractable target to counter platinum resistance in ovarian cancer.


Assuntos
Cisplatino/farmacologia , Histona Desacetilases/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT1/metabolismo , Acetilação , Animais , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes BRCA1 , Genes BRCA2 , Histona Desacetilases/genética , Humanos , Neoplasias Ovarianas/genética , Fosforilação , Proteínas Repressoras/genética
6.
EMBO J ; 30(3): 556-68, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21183955

RESUMO

The mitochondria and the endoplasmic reticulum (ER) are two organelles that critically contribute to apoptosis induction. While it is established that they communicate, how cell death signals are transmitted from the mitochondria to the ER is unknown. Here, we show that the mitochondrial fission protein Fission 1 homologue (Fis1) conveys an apoptosis signal from the mitochondria to the ER by interacting with Bap31 at the ER and facilitating its cleavage into the pro-apoptotic p20Bap31. Exogenous apoptosis inducers likewise use this signalling route and induce the procession of Bap31. Moreover, we show that the recruitment of procaspase-8 to the Fis1-Bap31 platform is an early event during apoptosis induction. The association of procaspase-8 with the Fis1-Bap31 complex is dependent on the variant of death effector domain (vDED) in Bap31 and is required for the activation of procaspase-8. This signalling pathway establishes a feedback loop by releasing Ca(2+) from the ER that activates the mitochondria for apoptosis. Hence, the Fis1-Bap31 complex (ARCosome) that spans the mitochondria-ER interface serves as a platform to activate the initiator procaspase-8, and thereby bridges two critical organelles for apoptosis signalling.


Assuntos
Apoptose/fisiologia , Retículo Endoplasmático/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/fisiologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais/fisiologia , Cálcio/metabolismo , Caspase 8/metabolismo , Primers do DNA/genética , Retículo Endoplasmático/metabolismo , Vetores Genéticos , Humanos , Immunoblotting , Imunoprecipitação , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Permeabilidade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA