Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36834556

RESUMO

Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.


Assuntos
MicroRNAs , RNA Longo não Codificante , Pequeno RNA não Traduzido , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno/genética , MicroRNAs/genética , Plantas/metabolismo , RNA de Plantas/genética
2.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498906

RESUMO

Brassinosteroid hormones (BRs) multitask to smoothly regulate a broad spectrum of vital physiological processes in plants, such as cell division, cell expansion, differentiation, seed germination, xylem differentiation, reproductive development and light responses (photomorphogenesis and skotomorphogenesis). Their importance is inferred when visible abnormalities arise in plant phenotypes due to suboptimal or supraoptimal hormone levels. This group of steroidal hormones are major growth regulators, having pleiotropic effects and conferring abiotic stress resistance to plants. Numerous abiotic stresses are the cause of significant loss in agricultural yield globally. However, plants are well equipped with efficient stress combat machinery. Scavenging reactive oxygen species (ROS) is a unique mechanism to combat the deleterious effects of abiotic stresses. In light of numerous reports in the past two decades, the complex BR signaling under different stress conditions (drought, salinity, extreme temperatures and heavy metals/metalloids) that drastically hinders the normal metabolism of plants is gradually being untangled and revealed. Thus, crop improvement has substantial potential by tailoring either the brassinosteroid signaling, biosynthesis pathway or perception. This review aims to explore and dissect the actual mission of BRs in signaling cascades and summarize their positive role with respect to abiotic stress tolerance.


Assuntos
Brassinosteroides , Estresse Fisiológico , Brassinosteroides/metabolismo , Estresse Fisiológico/genética , Plantas/metabolismo , Secas , Hormônios/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
3.
Plant Sci ; 323: 111380, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35842058

RESUMO

N-glycans and N-glycan processing enzymes are key players in regulating the ripening of tomato (Solanum lycopersicum) fruits, a model for fleshy fruit ripening. ß-D-N-acetylhexosaminidase (ß-Hex) is a N-glycan processing enzyme involved in fruit ripening. The suppression of ß-Hex results in enhanced fruit shelf life and firmness in both climacteric and non-climacteric fruits. Previously, we have shown that ripening specific expression of ß-Hex is regulated by RIPENING INHIBITOR (RIN), ABSCISIC ACID STRESS RIPENING 1 (SlASR1) and ethylene. However, the precise mechanism of ethylene-mediated regulation of ß-Hex remains elusive. To gain insights into this, we have performed 5' deletion mapping of tomato ß-Hex promoter and a shorter promoter fragment (pD-200, 200 bp upstream to translational start site) is identified, which was found critical for spatio-temporal transcriptional regulation of ß-Hex. Further, site specific mutagenesis in RIN and ASR1 binding sites in pD-200 provides key insights into ripening specific promoter activity. Furthermore, induction of GUS activity by ethylene, yeast one hybrid assay and EMSA identify Ethylene Response Factor SlERF.E4 as a positive regulator of ß-Hex. Taken together, our study suggest that SlERF.E4 together with RIN and SlASR1 transcriptionally regulates ß-Hex and all these three proteins are essential for fruit ripening specific expression of ß-Hex in tomato.


Assuntos
Solanum lycopersicum , Etilenos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Front Plant Sci ; 13: 885128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645997

RESUMO

RNA interference (RNAi) has been exploited by scientists worldwide to make a significant contribution in the arena of sustainable agriculture and integrated pest management. These strategies are of an imperative need to guarantee food security for the teeming millions globally. The already established deleterious effects of chemical pesticides on human and livestock health have led researchers to exploit RNAi as a potential agri-biotechnology tool to solve the burning issue of agricultural wastage caused by pests and pathogens. On the other hand, CRISPR/Cas9, the latest genome-editing tool, also has a notable potential in this domain of biotic stress resistance, and a constant endeavor by various laboratories is in progress for making pathogen-resistant plants using this technique. Considerable outcry regarding the ill effects of genetically modified (GM) crops on the environment paved the way for the research of RNAi-induced double-stranded RNAs (dsRNA) and their application to biotic stresses. Here, we mainly focus on the application of RNAi technology to improve disease resistance in plants and its relevance in today's CRISPR-dominated world in terms of exogenous application of dsRNAs. We also focused on the ongoing research, public awareness, and subsequent commercialization of dsRNA-based biocontrol products.

5.
Plants (Basel) ; 11(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684223

RESUMO

Plants' stress response machinery is characterized by an intricate network of signaling cascades that receive and transmit environmental cues and ultimately trigger transcriptional reprogramming. The family of epigenetic regulators that are the key players in the stress-induced signaling cascade comprise of chromatin remodelers, histone modifiers, DNA modifiers and regulatory non-coding RNAs. Changes in the histone modification and DNA methylation lead to major alterations in the expression level and pattern of stress-responsive genes to adjust with abiotic stress conditions namely heat, cold, drought and salinity. The spotlight of this review falls primarily on the chromatin restructuring under severe abiotic stresses, crosstalk between epigenetic regulators along with a brief discussion on stress priming in plants.

6.
Bioengineering (Basel) ; 9(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35200417

RESUMO

During evolution, both human and plant pathogens have evolved to utilize a diverse range of carbon sources. N-acetylglucosamine (GlcNAc), an amino sugar, is one of the major carbon sources utilized by several human and phytopathogens. GlcNAc regulates the expression of many virulence genes of pathogens. In fact, GlcNAc catabolism is also involved in the regulation of virulence and pathogenesis of various human pathogens, including Candida albicans, Vibrio cholerae, Leishmania donovani, Mycobacterium, and phytopathogens such as Magnaporthe oryzae. Moreover, GlcNAc is also a well-known structural component of many bacterial and fungal pathogen cell walls, suggesting its possible role in cell signaling. Over the last few decades, many studies have been performed to study GlcNAc sensing, signaling, and metabolism to better understand the GlcNAc roles in pathogenesis in order to identify new drug targets. In this review, we provide recent insights into GlcNAc-mediated cell signaling and pathogenesis. Further, we describe how the GlcNAc metabolic pathway can be targeted to reduce the pathogens' virulence in order to control the disease prevalence and crop productivity.

8.
Theor Appl Genet ; 135(2): 367-387, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34973111

RESUMO

Remarkable diversity in the domain of genome loci architecture, structure of effector complex, array of protein composition, mechanisms of adaptation along with difference in pre-crRNA processing and interference have led to a vast scope of detailed classification in bacterial and archaeal CRISPR/Cas systems, their intrinsic weapon of adaptive immunity. Two classes: Class 1 and Class 2, several types and subtypes have been identified so far. While the evolution of the effector complexes of Class 2 is assigned solely to mobile genetic elements, the origin of Class 1 effector molecules is still in a haze. Majority of the types target DNA except type VI, which have been found to target RNA exclusively. Cas9, the single effector protein, has been the primary focus of CRISPR-mediated genome editing revolution and is an integral part of Class 2 (type II) system. The present review focuses on the different CRISPR types in depth and the application of CRISPR/Cas9 for epigenome modification, targeted base editing and improving traits such as abiotic and biotic stress tolerance, yield and nutritional aspects of tomato breeding.


Assuntos
Sistemas CRISPR-Cas , Solanum lycopersicum , Archaea/genética , Edição de Genes , Solanum lycopersicum/genética , Melhoramento Vegetal
9.
Sci Rep ; 11(1): 21734, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741097

RESUMO

B-cell lymphoma2 (Bcl-2)-associated athanogene (BAG) family proteins are evolutionary conserved across all eukaryotes. These proteins interact with HSP70/HSC70 and function as co-chaperones during stress response and developmental pathways. Compared to the animal counterpart, the BAG proteins in plants are much less studied and primarily Arabidopsis BAG proteins have been identified and characterized for their role in programmed cell death, homeostasis, growth and development, abiotic and biotic stress response. Here, we have identified BAG protein family (SlBAGs) in tomato, an economically important and a model fruit crop using genome-wide scanning. We have performed phylogenetic analysis, genes architecture assessment, chromosomal location and in silico promoter analysis. Our data suggest that SlBAGs show differential tissue specific expression pattern during plant development particularly fruit development and ripening. Furthermore, we reported that expression of SlBAGs is modulated during abiotic stresses and is regulated by stress hormones ABA and ethylene. In planta subcellular localization reveals their diverse subcellular localization, and many members are localized in nucleus and cytoplasm. Like previous reports, our protein-protein interaction network and yeast two-hybrid analysis uncover that SlBAGs interact with HSP70. The current study provides insights into role of SlBAGs in plant development particualry fruit ripening and abiotic stress response.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiologia , Estresse Fisiológico , Proteínas de Arabidopsis/genética , Frutas/fisiologia , Genoma de Planta , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Família Multigênica , Proteínas de Plantas/genética
10.
Microbiol Res ; 251: 126830, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34385082

RESUMO

The N-acetyl glucosamine catabolic pathway has been well established as a critically essential pathway for the survival and pathogenesis of several intracellular pathogens. The intracellular form of Leishmania donovani resides inside the parasitophorous vacuole of macrophages. Recent studies have shown that amino sugars, such as N-acetyl glucosamine, are released from the turnover of host macromolecules, such as glycosaminoglycans, glycoproteins, and proteoglycans, inside the parasitophorous vacuole. Three enzymes, hexokinase (Hxk), N-acetyl glucosamine-6-phosphate deacetylase (NAGD) and glucosamine-6-phosphate deaminase (GND), are sequentially involved in the catabolism of GlcNAc. The Leishmania donovani genome encodes all enzymes of the GlcNAc catabolic pathway. Here, we investigated the role of the GlcNAc catabolic pathway in the proliferation and survival of L. donovani by characterizing the NAGD gene of this pathway. Recombinant LdNAGD displayed deacetylation activity and was localized inside the glycosomes. LdNAGD gene deletion impaired GlcNAc catabolism and was indispensable for the viability of L. donovani in media containing GlcNAc as the sole carbon source. Furthermore, these Δnagd cells showed attenuated virulence in THP-1 cells and a significantly reduced proliferation rate compared to wild type (WT) cells inside THP-1 cells. Our data suggested that LdNAGD is important for the intracellular proliferation of L. donovani and may represent a potential drug target.


Assuntos
Leishmania donovani , Proteínas de Protozoários , Carbono/metabolismo , Enzimas/genética , Enzimas/metabolismo , Glucosamina/metabolismo , Leishmania donovani/enzimologia , Leishmania donovani/genética , Proteínas de Protozoários/genética
11.
Microbiol Res ; 239: 126550, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32712567

RESUMO

Availability and efficient utilization of host-derived nutrients by pathogens decide the fate of host-pathogen interaction. In Magnaporthe oryzae, N-acetylglucosamine (GlcNAc) catabolic pathway was found essential for successful host colonization and pathogenicity. GlcNAc catabolic enzymes hexokinase, GlcNAc-6-phosphate deacetylase (MoDac) and GlcN-6-phosphate deaminase (MoDeam) are encoded in a genomic cluster in M. oryzae and several phytopathogenic fungi. However, transcriptional regulation of GlcNAc catabolic pathway was not understood. We identified a conserved Ndt80/PhoG-like transcriptional regulator as a part of the GlcNAc catabolic gene cluster in M. oryzae and other fungi. We found that MoNdt80 is essential for GlcNAc utilization and pathogenicity of M. oryzae. Unlike WT, ΔMoNdt80 failed to induce transcription of GlcNAc catabolic pathway genes in response to GlcNAc. MoNdt80 could bind to a specific cis-acting consensus sequence GNCRCAAA[AT], present in the promoter of MoDac, MoDeam and ß-hexosaminidase (MoHex). Further, comparative RNA-sequencing analysis using WT and ΔMoNdt80 revealed a large set of GlcNAc responsive genes that are under the transcriptional control of MoNdt80. These genes encoded GlcNAc catabolic enzymes, transporters and cell wall degrading enzymes which are required for hyphal growth expansion during host colonization. Overall, these results suggest MoNdt80 mediated transcriptional regulation of GlcNAc catabolic pathway is essential for successful host colonization and pathogenesis.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno/genética , Transativadores/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Metabolismo , Família Multigênica , Oryza/microbiologia , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas
13.
Phytochemistry ; 158: 103-109, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30500595

RESUMO

Oxalic acid is a naturally occurring metabolite in plants and a common constituent of all plant-derived human diets. Oxalic acid has diverse unrelated roles in plant metabolism, including pH regulation in association with nitrogen metabolism, metal ion homeostasis and calcium storage. In plants, oxalic acid is also a pathogenesis factor and is secreted by various fungi during host infection. Unlike those of plants, fungi and bacteria, the human genome does not contain any oxalate-degrading genes, and therefore, the consumption of large amounts of plant-derived oxalate is considered detrimental to human health. In this review, we discuss recent biotechnological approaches that have been used to reduce the oxalate content of plant tissues.


Assuntos
Produtos Agrícolas/metabolismo , Ácido Oxálico/metabolismo , Melhoramento Vegetal/métodos , Proteínas de Plantas/metabolismo , Biotecnologia/métodos , Carboxiliases/genética , Carboxiliases/metabolismo , Produtos Agrícolas/genética , Enzimas/genética , Enzimas/metabolismo , Qualidade dos Alimentos , Humanos , Ácido Oxálico/toxicidade , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
14.
Appl Microbiol Biotechnol ; 102(22): 9731-9743, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30121747

RESUMO

The morphological plasticity of Candida albicans is a virulence determinant as the hyphal form has significant roles in the infection process. Recently, phosphoregulation of proteins through phosphorylation and dephosphorylation events has gained importance in studying the regulation of pathogenicity at the molecular level. To understand the importance of phosphorylation in hyphal morphogenesis, global analysis of the phosphoproteome was performed after hyphal induction with elevated temperature, serum, and N-acetyl-glucosamine (GlcNAc) treatments. The study identified 60, 20, and 53 phosphoproteins unique to elevated temperature-, serum-, and GlcNAc-treated conditions, respectively. Distribution of unique phosphorylation sites sorted by the modified amino acids revealed that predominant phosphorylation occurs in serine, followed by threonine and tyrosine residues in all the datasets. However, the frequency distribution of phosphorylation sites in the proteins varied with treatment conditions. Further, interaction network-based functional annotation of protein kinases of C. albicans as well as identified phosphoproteins was performed, which demonstrated the interaction of kinases with phosphoproteins during filamentous growth. Altogether, the present findings will serve as a base for further functional studies in the aspects of protein kinase-target protein interaction in effectuating phosphorylation of target proteins, and delineating the downstream signaling networks linked to virulence characteristics of C. albicans.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Fosfoproteínas/metabolismo , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/genética , Hifas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Virulência
15.
PLoS One ; 12(3): e0173381, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278249

RESUMO

Bioethanol is an environment friendly and renewable source of energy produced by the fermentation of agricultural raw material by a variety of microorganisms including yeast. Obtaining yeast strains that are tolerant to stresses like high levels of ethanol and high temperature is highly desirable as it reduces cost and increases yield during bioethanol production. Here, we report that heterologous expression of C-5 Sterol desaturase (FvC5SD)-an ergosterol biosynthesis enzyme from an edible mushroom Flammulina velutipes in fission yeast, not only imparts increased thermotolerance but also tolerance towards high ethanol concentration and low pH. This tolerance could be attributed to an increase of ≈1.5 fold in the level of ergosterol and oleic acid (C-18 unsaturated fatty acid) as analysed by gas chromatography- mass spectrometry. FvC5SD is a membrane localized iron binding enzyme that introduces double bond at C-5 position into the Δ7-sterol substrates to yield Δ5, 7- sterols as products. In F. velutipes, FvC5SD transcript was observed to be upregulated by ≈5 fold under low pH condition and by ≈ 9 folds and ≈5 fold at 40°C and 4°C respectively when compared to normal growth temperature of 23°C. Besides, susceptibility to cell wall inhibiting drugs like Congo red and Calcoflour white was also found to increase in FvC5SD expressing S. pombe strain. Alteration in membrane sterol and fatty acid composition could also lead to increase in susceptibility to cell wall inhibiting drugs. Thus, this study has immense industrial application and can be employed to ensure competitiveness of fermentation process.


Assuntos
Etanol/farmacologia , Flammulina/enzimologia , Oxirredutases/genética , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Termotolerância/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Ergosterol/metabolismo , Flammulina/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Ácido Oleico/metabolismo , Oxirredutases/metabolismo , Regiões Promotoras Genéticas/genética , Transporte Proteico , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia , Temperatura
16.
mSphere ; 1(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504497

RESUMO

Vesicular dynamics is one of the very important aspects of cellular physiology, an imbalance of which leads to the disorders or diseases in higher eukaryotes. We report the functional characterization of a palmitoylated protein kinase from Candida albicans whose homologue in Saccharomyces cerevisiae has been reported to be involved in negative regulation of membrane fusion and was named Env7. However, the downstream target of this protein remains to be identified. Env7 in C. albicans (CaEnv7) could be isolated from the membrane fraction and localized to vesicular structures associated with the Golgi apparatus. Our work reports Env7 in C. albicans as a new player involved in maintaining the functional dynamics at the trans-Golgi network (TGN) by interacting with two other TGN-resident proteins, namely, Imh1p and Arl1p. Direct interaction could be detected between Env7p and the golgin protein Imh1p. Env7 is itself phosphorylated (Env7p) and phosphorylates Imh1 in vivo. An interaction between Env7 and Imh1 is required for the targeted localization of Imh1. CaEnv7 has a putative palmitoylation site toward both N and C termini. An N-terminal palmitoylation-defective strain retains its ability to phosphorylate Imh1 in vitro. An ENV7 homozygous mutant showed compromised filamentation in solid media and attenuated virulence, whereas an overexpressed strain affected cell wall integrity. Thus, Env7 plays a subtle but important role at the level of multitier regulation that exists at the TGN. IMPORTANCE A multitier regulation exists at the trans-Golgi network in all higher organisms. We report a palmitoylated protein kinase, Env7, that functions at the TGN interface by interacting with two more TGN-resident proteins, namely, Imh1 and Arl1. Palmitoylation seems to be important for the specific localization. This study focuses on the involvement of a ubiquitous protein kinase, whose substrates had not yet been reported from any organism, as an upstream signaling component that modulates the activity of the Imh1-Arl1 complex crucial for maintaining membrane asymmetry. Virulence is significantly diminished in an Env7 mutant. The functioning of this protein in C. albicans seems to be quite different from its nearest homologue in S. cerervisiae, which reflects the evolutionary divergence between these two organisms.

18.
Theor Appl Genet ; 129(9): 1639-55, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27381849

RESUMO

KEY MESSAGE: New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.


Assuntos
Produtos Agrícolas/genética , Engenharia Genética/métodos , Plantas Geneticamente Modificadas/genética , Resistência à Doença , Armazenamento de Alimentos , Valor Nutritivo , Doenças das Plantas , Estresse Fisiológico , Transgenes
19.
Front Plant Sci ; 7: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26834776

RESUMO

α-Mannosidase (α-Man), a fruit ripening-specific N-glycan processing enzyme, is involved in ripening-associated fruit softening process. However, the regulation of fruit-ripening specific expression of α-Man is not well understood. We have identified and functionally characterized the promoter of tomato (Solanum lycopersicum) α-Man to provide molecular insights into its transcriptional regulation during fruit ripening. Fruit ripening-specific activation of the α-Man promoter was revealed by analysing promoter driven expression of beta-glucuronidase (GUS) reporter in transgenic tomato. We found that RIPENING INHIBITOR (RIN), a MADS box family transcription factor acts as positive transcriptional regulator of α-Man during fruit ripening. RIN directly bound to the α-Man promoter sequence and promoter activation/α-Man expression was compromised in rin mutant fruit. Deletion analysis revealed that a promoter fragment (567 bp upstream of translational start site) that contained three CArG boxes (binding sites for RIN) was sufficient to drive GUS expression in fruits. In addition, α-Man expression was down-regulated in fruits of Nr mutant which is impaired in ethylene perception and promoter activation/α-Man expression was induced in wild type following treatment with a precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC). Although, α-Man expression was induced in rin mutant after ACC treatment, the transcript level was less as compared to ACC-treated wild type. Taken together, these results suggest RIN-mediated direct transcriptional regulation of α-Man during fruit ripening and ethylene may acts in RIN-dependent and -independent ways to regulate α-Man expression.

20.
Environ Microbiol ; 18(3): 1063-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26754109

RESUMO

Pathogens encounter and metabolize a range of host-derived metabolites while proliferating inside the host. Our understanding of these metabolites and their metabolic processes has remained largely incomplete. We investigated the role of the Magnaporthe oryzae N-acetylglucosamine (GlcNAc) catabolic pathway during rice infection. The catabolic pathway is composed of a GlcNAc transporter (MoNgt1), hexokinase(s), a GlcNAc-6-phosphate deacetylase (MoDac) and a GlcN-6-phosphate deaminase (MoDeam). A detailed characterization of the Δmongt1, Δmodac and Δmodeam null mutants revealed that a defect in GlcNAc catabolism impairs the pathogenicity of M. oryzae. These mutants showed severely reduced virulence in susceptible rice cultivar due to their inability to neutralize host-derived reactive oxygen species and their failure to develop invasive hyphal growth within the host tissue. Interestingly, during oxidative stress, M. oryzae proliferated efficiently in GlcNAc-containing media compared with other sugars, and the expression of fungal antioxidant genes was upregulated following GlcNAc treatment. However, GlcNAc inhibited the growth of the Δmodac and Δmodeam mutants, and this growth inhibition was enhanced during oxidative stress. These results suggest that GlcNAc helps fungus to overcome oxidative stress inside its host, perhaps by activating an antioxidant defence. In the absence of a functional catabolic pathway, GlcNAc becomes toxic to the cells.


Assuntos
Acetilglucosamina/metabolismo , Magnaporthe/metabolismo , Magnaporthe/patogenicidade , Oryza/microbiologia , Antioxidantes/metabolismo , Genes Fúngicos , Magnaporthe/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA