Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Prostate ; 84(3): 277-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37942701

RESUMO

BACKGROUND: Neuropilin 2 (NRP2) expression in tissue is an independent prognostic factor for aggressive prostate cancer. Since the NRP2 pathway activation is thought to occur in part through secondary resistance, quantification of NRP2 in initial tissue biopsy specimens collected at diagnosis may have limited utility in identifying patients at highest risk for morbidity and mortality. Given that metastatic tissue is only occasionally obtained for analysis, there is a need for development of a plasma biomarker indicative of NRP2 pathway activation to potentially inform prostate cancer prognosis. Therefore, we investigated if plasma levels of NRP2 or vascular endothelial growth factor C (VEGF-C), a known soluble ligand of NRP2, are prognostic for prostate cancer. We hypothesized that plasma NRP2 and VEGF-C would be associated with more advanced disease or relapsed disease. METHODS: NRP2 and VEGF-C levels were quantified by enzyme-linked immunoassay in plasma samples obtained from 145 prostate cancer patients in an opportunistic biobank. These patients were either (1) newly diagnosed (N = 28), (2) in remission (N = 56), or (3) relapsed disease (N = 61). Plasma samples from 15 adult males without known malignancy served as a comparator cohort. Statistical analysis was performed to investigate the association of plasma NRP2/VEGF-C with patient outcomes, adjusting for age, race, prostate-specific antigen (PSA), Gleason score, and tumor stage at diagnosis. RESULTS: Neither NRP2 nor VEGF-C levels were significantly different in cancer patients compared to noncancer controls. We observed no clear association between plasma NRP2 and disease severity. Increased plasma VEGF-C was significantly associated with disease remission and correlated with Stage I/II and intermediate-risk Gleason score. Neither NRP2 nor VEGF-C correlated with PSA level. CONCLUSIONS: Although tissue NRP2 expression correlates with severe disease, this was not observed for plasma NRP2. Plasma NRP2 levels did not correlate with disease severity or relapse. VEGF-C was highest in patients in remission and with less severe disease. Future investigation is needed to identify noninvasive methods to assess tumor NRP2 status.


Assuntos
Neoplasias da Próstata , Fator C de Crescimento do Endotélio Vascular , Adulto , Humanos , Masculino , Recidiva Local de Neoplasia , Neuropilina-2/metabolismo , Antígeno Prostático Específico , Neoplasias da Próstata/patologia
2.
bioRxiv ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36993422

RESUMO

While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel, targetable, pathways that contribute to tumor progression of PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC has been only little explored. Here, we show that GD2 is expressed on a small subpopulation of PC cells in a subset of patients, especially in metastatic PC. Variable levels of cell surface GD2 expression are seen in most PC cell lines, and the expression is highly upregulated by experimental induction of lineage progression or enzalutamide resistance in CRPC cell models. GD2high cell fraction is enriched upon growth of PC cells as tumorspheres and GD2high fraction is enriched in tumorsphere growth. CRISPR-Cas9 knockout (KO) of the rate-limiting GD2 biosynthetic enzyme GD3 Synthase (GD3S) in GD2-high CRPC cell models led to marked impairment of their in vitro oncogenic traits, reduced cancer stem cell (CSC) and epithelial-mesenchymal transition (EMT) marker expression and growth as bone-implanted xenograft tumors. Our results support the potential role of GD3S and its product GD2 in promoting PC tumorigenesis by maintaining cancer stem cells and suggest the potential for GD2 targeting in advanced PC.

3.
Res Sq ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168280

RESUMO

Resistance to the current Androgen Receptor Signaling Inhibitor (ARSI) therapies has led to higher incidences of therapy-induced neuroendocrine-like prostate cancer (t-NEPC). This highly aggressive subtype with predominant small cell-like characteristics is resistant to taxane chemotherapies and has a dismal overall survival. t-NEPCs are mostly treated with platinum-based drugs with a combination of etoposide or taxane and have less selectivity and high systemic toxicity, which often limit their clinical potential. During t-NEPC transformation, adenocarcinomas lose their luminal features and adopt neuro-basal characteristics. Whether the adaptive neuronal characteristics of t-NEPC are responsible for such taxane resistance remains unknown. Pathway analysis from patient gene-expression databases indicates that t-NEPC upregulates various neuronal pathways associated with enhanced cellular networks. To identify transcription factor(s) (TF) that could be important for promoting the gene expression for neuronal characters in t-NEPC, we performed ATAC-Seq, acetylated-histone ChIP-seq, and RNA-seq in our NE-like cell line models and analyzed the promoters of transcriptionally active and significantly enriched neuroendocrine-like (NE-like) cancer-specific genes. Our results indicate that Pax5 could be an important transcription factor for neuronal gene expression and specific to t-NEPC. Pathway analysis revealed that Pax5 expression is involved in axonal guidance, neurotransmitter regulation, and neuronal adhesion, which are critical for strong cellular communications. Further results suggest that depletion of Pax5 disrupts cellular interaction in NE-like cells and reduces surface growth factor receptor activation, thereby, sensitizing them to taxane therapies. Moreover, t-NEPC specific hydroxymethylation of Pax5 promoter CpG islands favors Pbx1 binding to induce Pax5 expression. Based on our study, we concluded that continuous exposure to ARSI therapies leads to epigenetic modifications and Pax5 activation in t-NEPC, which promotes the expression of genes necessary to adopt taxane-resistant NE-like cancer. Thus, targeting the Pax5 axis can be beneficial for reverting their taxane sensitivity.

4.
Cancer Metastasis Rev ; 41(3): 771-787, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35776228

RESUMO

Neuropilins (NRPs) are transmembrane proteins involved in vascular and nervous system development by regulating angiogenesis and axon guidance cues. Several published reports have established their role in tumorigenesis. NRPs are detectable in tumor cells of several cancer types and participate in cancer progression. NRP2 is also expressed in endothelial and immune cells in the tumor microenvironment and promotes functions such as lymphangiogenesis and immune suppression important for cancer progression. In this review, we have taken a comprehensive approach to discussing various aspects of NRP2-signaling in cancer, including its regulation, functional significance in cancer progression, and how we could utilize our current knowledge to advance the studies and target NRP2 to develop effective cancer therapies.


Assuntos
Neoplasias , Neuropilina-2 , Transdução de Sinais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica , Neuropilina-2/metabolismo , Neuropilinas/metabolismo , Microambiente Tumoral
5.
Cell Rep ; 40(3): 111097, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858551

RESUMO

Neuroendocrine (NE)-like tumors secrete various signaling molecules to establish paracrine communication within the tumor milieu and to create a therapy-resistant environment. It is important to identify molecular mediators that regulate this secretory phenotype in NE-like cancer. The current study highlights the importance of a cell surface molecule, Neuropilin-2 (NRP2), for the secretory function of NE-like prostate cancer (PCa). Our analysis on different patient cohorts suggests that NRP2 is high in NE-like PCa. We have developed cell line models to investigate NRP2's role in NE-like PCa. Our bioinformatics, mass spectrometry, cytokine array, and other supporting experiments reveal that NRP2 regulates robust secretory phenotype in NE-like PCa and controls the secretion of factors promoting cancer cell survival. Depletion of NRP2 reduces the secretion of these factors and makes resistant cancer cells sensitive to chemotherapy in vitro and in vivo. Therefore, targeting NRP2 can revert cellular secretion and sensitize PCa cells toward therapy.


Assuntos
Neuropilina-2 , Neoplasias da Próstata , Linhagem Celular Tumoral , Humanos , Masculino , Neuropilina-2/metabolismo , Fenótipo , Próstata/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais/fisiologia
6.
Oncogene ; 41(30): 3747-3760, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754042

RESUMO

Aberrant transcriptional activity of androgen receptor (AR) is one of the dominant mechanisms for developing of castration-resistant prostate cancer (CRPC). Analyzing AR-transcriptional complex related to CRPC is therefore important towards understanding the mechanism of therapy resistance. While studying its mechanism, we observed that a transmembrane protein called neuropilin-2 (NRP2) plays a contributory role in forming a novel AR-transcriptional complex containing nuclear pore proteins. Using immunogold electron microscopy, high-resolution confocal microscopy, chromatin immunoprecipitation, proteomics, and other biochemical techniques, we delineated the molecular mechanism of how a specific splice variant of NRP2 becomes sumoylated upon ligand stimulation and translocates to the inner nuclear membrane. This splice variant of NRP2 then stabilizes the complex between AR and nuclear pore proteins to promote CRPC specific gene expression. Both full-length and splice variants of AR have been identified in this specific transcriptional complex. In vitro cell line-based assays indicated that depletion of NRP2 not only destabilizes the AR-nuclear pore protein interaction but also inhibits the transcriptional activities of AR. Using an in vivo bone metastasis model, we showed that the inhibition of NRP2 led to the sensitization of CRPC cells toward established anti-AR therapies such as enzalutamide. Overall, our finding emphasize the importance of combinatorial inhibition of NRP2 and AR as an effective therapeutic strategy against treatment refractory prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Androgênios/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Neuropilina-2/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais
7.
Mol Cancer Res ; 20(8): 1208-1221, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533267

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer, as it commonly metastasizes to the liver resulting in an overall poor prognosis. However, the molecular mechanism involved in liver metastasis remains poorly understood. Here, we aimed to identify the MUC16-mediated molecular mechanism of PDAC-liver metastasis. Previous studies demonstrated that MUC16 and its C-terminal (Cter) domain are involved in the aggressiveness of PDAC. In this study, we observed MUC16 and its Cter expression significantly high in human PDAC tissues, PDAC organoids, and metastatic liver tissues, while no expression was observed in normal pancreatic tissues using IHC and immunofluorescence (IFC) analyses. MUC16 knockdown in SW1990 and CD18/HPAF PDAC cells significantly decreased the colony formation, migration, and endothelial/p-selectin binding. In contrast, MUC16-Cter ectopic overexpression showed significantly increased colony formation and motility in MiaPaCa2 pancreatic cancer cells. Interestingly, MUC16 promoted cell survival and colonization in the liver, mimicking an ex vivo environment. Furthermore, MUC16 enhanced liver metastasis in the in vivo mouse model. Our integrated analyses of RNA-sequencing suggested that MUC16 alters Neuropilin-2 (NRP2) and cell adhesion molecules in pancreatic cancer cells. Furthermore, we identified that MUC16 regulated NRP2 via JAK2/STAT1 signaling in PDAC. NRP2 knockdown in MUC16-overexpressed PDAC cells showed significantly decreased cell adhesion and migration. Overall, the findings indicate that MUC16 regulates NRP2 and induces metastasis in PDAC. IMPLICATIONS: This study shows that MUC16 plays a critical role in PDAC liver metastasis by mediating NRP2 regulation by JAK2/STAT1 axis, thereby paving the way for future therapy efforts for metastatic PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neuropilina-2 , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Animais , Antígeno Ca-125/metabolismo , Carcinoma Ductal Pancreático/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Proteínas de Membrana/metabolismo , Camundongos , Metástase Neoplásica , Neuropilina-2/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
8.
Bone Res ; 10(1): 6, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058441

RESUMO

Bone metastases occur in patients with advanced-stage prostate cancer (PCa). The cell-cell interaction between PCa and the bone microenvironment forms a vicious cycle that modulates the bone microenvironment, increases bone deformities, and drives tumor growth in the bone. However, the molecular mechanisms of PCa-mediated modulation of the bone microenvironment are complex and remain poorly defined. Here, we evaluated growth differentiation factor-15 (GDF15) function using in vivo preclinical PCa-bone metastasis mouse models and an in vitro bone cell coculture system. Our results suggest that PCa-secreted GDF15 promotes bone metastases and induces bone microarchitectural alterations in a preclinical xenograft model. Mechanistic studies revealed that GDF15 increases osteoblast function and facilitates the growth of PCa in bone by activating osteoclastogenesis through osteoblastic production of CCL2 and RANKL and recruitment of osteomacs. Altogether, our findings demonstrate the critical role of GDF15 in the modulation of the bone microenvironment and subsequent development of PCa bone metastasis.

9.
Mol Cell Biol ; 41(12): e0013521, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34570619

RESUMO

RNA polymerase II-associated factor 1 (PAF1)/pancreatic differentiation 2 (PD2) is a core subunit of the human PAF1 complex (PAF1C) that regulates the RNA polymerase II function during transcriptional elongation. PAF1/PD2 has also been linked to the oncogenesis of pancreatic ductal adenocarcinoma (PDAC). Here, we report that PAF1/PD2 undergoes posttranslational modification (PTM) through SUMOylation, enhancing the radiation resistance of PDAC cells. We identified that PAF1/PD2 is preferentially modified by small ubiquitin-related modifier 1 (SUMO 1), and mutating the residues (K)-150 and 154 by site-directed mutagenesis reduces the SUMOylation. Interestingly, PAF1/PD2 was found to directly interact with the promyelocytic leukemia (PML) protein in response to radiation, and inhibition of PAF1/PD2 SUMOylation at K-150/154 affects its interaction with PML. Our results demonstrate that SUMOylation of PAF1/PD2 increased in the radiated pancreatic cancer cells. Furthermore, inhibition of SUMOylation or PML reduces the cell growth and proliferation of PDAC cells after radiation treatment. These results suggest that SUMOylation of PAF1/PD2 interacts with PTM for PDAC cell survival. Furthermore, abolishing the SUMOylation in PDAC cells enhances the effectiveness of radiotherapy. Overall, our results demonstrate a novel PTM and PAF1/PD2 interaction through SUMOylation, and inhibiting the SUMOylation of PAF1/PD2 enhance the therapeutic efficacy for PDAC.


Assuntos
Carcinoma Ductal Pancreático/radioterapia , Neoplasias Pancreáticas/radioterapia , Proteína da Leucemia Promielocítica/metabolismo , Tolerância a Radiação/fisiologia , Sumoilação , Fatores de Transcrição/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/patologia , Dano ao DNA/efeitos da radiação , Humanos , Pâncreas/patologia , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína SUMO-1/metabolismo , Fatores de Transcrição/genética
10.
Bone Res ; 9(1): 24, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990538

RESUMO

Understanding the role of neuropilin 2 (NRP2) in prostate cancer cells as well as in the bone microenvironment is pivotal in the development of an effective targeted therapy for the treatment of prostate cancer bone metastasis. We observed a significant upregulation of NRP2 in prostate cancer cells metastasized to bone. Here, we report that targeting NRP2 in cancer cells can enhance taxane-based chemotherapy with a better therapeutic outcome in bone metastasis, implicating NRP2 as a promising therapeutic target. Since, osteoclasts present in the tumor microenvironment express NRP2, we have investigated the potential effect of targeting NRP2 in osteoclasts. Our results revealed NRP2 negatively regulates osteoclast differentiation and function in the presence of prostate cancer cells that promotes mixed bone lesions. Our study further delineated the molecular mechanisms by which NRP2 regulates osteoclast function. Interestingly, depletion of NRP2 in osteoclasts in vivo showed a decrease in the overall prostate tumor burden in the bone. These results therefore indicate that targeting NRP2 in prostate cancer cells as well as in the osteoclastic compartment can be beneficial in the treatment of prostate cancer bone metastasis.

11.
Genes (Basel) ; 12(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918816

RESUMO

Urothelial bladder cancer ranks among the 10 most frequently diagnosed cancers worldwide. In our previous study, the transmembrane protein neuropilin-2 (NRP2) emerged as a predictive marker in patients with bladder cancer. NRP2 consists of several splice variants; the most abundant of these, NRP2a and NRP2b, are reported to have different biological functions in lung cancer progression. For other cancer types, there are no published data on the role of these transcript variants in cancer progression and the clinical outcome. Here, we correlate NRP2 and its two most abundant transcript variants, NRP2A and NRP2B, with the clinical outcome using available genomic data with subsequent validation in our own cohort of patients with muscle-invasive bladder cancer. In addition to NRP2, NRP1 and the NRP ligands PDGFC and PDGFD were studied. Only NRP2A emerged as an independent prognostic marker for shorter cancer-specific survival in muscle-invasive bladder cancer in our cohort of 102 patients who underwent radical cystectomy between 2008 and 2014 with a median follow-up time of 82 months. Additionally, we demonstrate that high messenger expression of NRP2, NRP1, PDGFC and PDGFD associates with a more aggressive disease (i.e., a high T stage, positive lymph node status and reduced survival).


Assuntos
Biomarcadores Tumorais/metabolismo , Variação Genética , Neuropilina-2/metabolismo , Neoplasias da Bexiga Urinária/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neuropilina-2/genética , Prognóstico , Isoformas de Proteínas , Estudos Retrospectivos , Taxa de Sobrevida , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
12.
BMC Cancer ; 20(1): 941, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998722

RESUMO

BACKGROUND: Quiescent tumor cells pose a major clinical challenge due to their ability to resist conventional chemotherapies and to drive tumor recurrence. Understanding the molecular mechanisms that promote quiescence of tumor cells could help identify therapies to eliminate these cells. Significantly, recent studies have determined that the function of SOX2 in cancer cells is highly dose dependent. Specifically, SOX2 levels in tumor cells are optimized to promote tumor growth: knocking down or elevating SOX2 inhibits proliferation. Furthermore, recent studies have shown that quiescent tumor cells express higher levels of SOX2 compared to adjacent proliferating cells. Currently, the mechanisms through which elevated levels of SOX2 restrict tumor cell proliferation have not been characterized. METHODS: To understand how elevated levels of SOX2 restrict the proliferation of tumor cells, we engineered diverse types of tumor cells for inducible overexpression of SOX2. Using these cells, we examined the effects of elevating SOX2 on their proliferation, both in vitro and in vivo. In addition, we examined how elevating SOX2 influences their expression of cyclins, cyclin-dependent kinases (CDKs), and p27Kip1. RESULTS: Elevating SOX2 in diverse tumor cell types led to growth inhibition in vitro. Significantly, elevating SOX2 in vivo in pancreatic ductal adenocarcinoma, medulloblastoma, and prostate cancer cells induced a reversible state of tumor growth arrest. In all three tumor types, elevation of SOX2 in vivo quickly halted tumor growth. Remarkably, tumor growth resumed rapidly when SOX2 returned to endogenous levels. We also determined that elevation of SOX2 in six tumor cell lines decreased the levels of cyclins and CDKs that control each phase of the cell cycle, while upregulating p27Kip1. CONCLUSIONS: Our findings indicate that elevating SOX2 above endogenous levels in a diverse set of tumor cell types leads to growth inhibition both in vitro and in vivo. Moreover, our findings indicate that SOX2 can function as a master regulator by controlling the expression of a broad spectrum of cell cycle machinery. Importantly, our SOX2-inducible tumor studies provide a novel model system for investigating the molecular mechanisms by which elevated levels of SOX2 restrict cell proliferation and tumor growth.


Assuntos
Proliferação de Células/genética , Recidiva Local de Neoplasia/genética , Neoplasias/genética , Fatores de Transcrição SOXB1/genética , Apoptose/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia
13.
Clin Cancer Res ; 26(21): 5720-5734, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32847934

RESUMO

PURPOSE: Docetaxel plays an indispensable role in the management of advanced prostate cancer. However, more than half of patients do not respond to docetaxel, and those good responders frequently experience significant cumulative toxicity, which limits its dose duration and intensity. Hence, a second agent that could increase the initial efficacy of docetaxel and maintain tolerability at biologically effective doses may improve outcomes for patients. EXPERIMENTAL DESIGN: We determined phosphodiesterase 5 (PDE5) expression levels in human and genetically engineered mouse (GEM) prostate tissues and tumor-derived cell lines. Furthermore, we investigated the therapeutic benefits and underlying mechanism of PDE5 inhibitor sildenafil in combination with docetaxel using in vitro, Pten conditional knockout (cKO), derived tumoroid and xenograft prostate cancer models. RESULTS: PDE5 expression was higher in both human and mouse prostate tumors and cancer cell lines compared with normal tissues/cells. In GEM prostate-derived cell lines, PDE5 expression increased from normal prostate (wild-type) epithelial cells to androgen-dependent and castrated prostate-derived cell lines. The addition of physiologically achievable concentrations of sildenafil enhanced docetaxel-induced prostate cancer cell growth inhibition and apoptosis in vitro, reduced murine 3D tumoroid growth, and in vivo tumorigenicity as compared with docetaxel alone. Furthermore, sildenafil enhanced docetaxel-induced NO and cGMP levels thereby augmenting antitumor activity. CONCLUSIONS: Our results demonstrate that sildenafil's addition could sensitize docetaxel chemotherapy in prostate cancer cells at much lesser concentration than needed for inducing cell death. Thus, the combinatorial treatment of sildenafil and docetaxel may improve anticancer efficacy and reduce chemotherapy-induced side-effects among patients with advanced prostate cancer.


Assuntos
Docetaxel/administração & dosagem , Óxido Nítrico/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Citrato de Sildenafila/administração & dosagem , Androgênios/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Modelos Animais de Doenças , Docetaxel/efeitos adversos , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Knockout , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Transdução de Sinais/efeitos dos fármacos , Citrato de Sildenafila/efeitos adversos
14.
Biochim Biophys Acta Rev Cancer ; 1874(1): 188383, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32535158

RESUMO

Androgen deprivation therapy (ADT) is the primary systemic therapy for treating locally advanced or metastatic prostate cancer (PCa). Despite its positive effect on PCa patient survival, ADT causes various adverse effects, including increased cardiovascular risk factors and cardiotoxicity. Lifespans extension, early use of ADT, and second-line treatment with next-generation androgen receptor pathway inhibitors would further extend the duration of ADT and possibly increase the risk of ADT-induced cardiotoxicity. Meanwhile, information on the molecular mechanisms underlying ADT-induced cardiotoxicity and measures to prevent it is limited, mainly due to the lack of specifically designed preclinical studies and clinical trials. This review article compiles up-to-date evidence obtained from observational studies and clinical trials, in order to gain new insights for deciphering the association between ADT use and cardiotoxicity. In addition, potential cardioprotective strategies involving GnRH receptors and second messenger cGMP are discussed.


Assuntos
Antagonistas de Androgênios/efeitos adversos , Antineoplásicos Hormonais/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/administração & dosagem , Androgênios/metabolismo , Antineoplásicos Hormonais/administração & dosagem , Cardiotoxicidade/epidemiologia , Cardiotoxicidade/etiologia , Cardiotoxicidade/fisiopatologia , Cardiotoxicidade/prevenção & controle , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Ensaios Clínicos como Assunto , GMP Cíclico/metabolismo , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Longevidade/fisiologia , Masculino , Estudos Observacionais como Assunto , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico , Receptores LHRH/agonistas , Receptores LHRH/antagonistas & inibidores , Receptores LHRH/metabolismo , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento
15.
J Cell Physiol ; 235(4): 3731-3740, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31587305

RESUMO

Prostate cancer (PCa) is one of the leading causes of cancer deaths in men. In this cancer, the stem cell transcription factor SOX2 increases during tumor progression, especially as the cancer progresses to the highly aggressive neuroendocrine-like phenotype. Other studies have shown that knockdown of RB1 and TP53 increases the expression of neuroendocrine markers, decreases the sensitivity to enzalutamide, and increases the expression of SOX2. Importantly, knockdown of SOX2 in the context of RB1 and TP53 depletion restored sensitivity to enzalutamide and reduced the expression of neuroendocrine markers. In this study, we examined whether elevating SOX2 is not only necessary, but also sufficient on its own to promote the expression of neuroendocrine markers and confer enzalutamide resistance. For this purpose, we engineered LNCaP cells for inducible overexpression of SOX2 (i-SOX2-LNCaP). As shown previously for other tumor cell types, inducible elevation of SOX2 in i-SOX2-LNCaP inhibited cell proliferation. SOX2 elevation also increased the expression of several neuroendocrine markers, including several neuropeptides and synaptophysin. However, SOX2 elevation did not decrease the sensitivity of i-SOX2-LNCaP cells to enzalutamide, which indicates that elevating SOX2 on its own is not sufficient to confer enzalutamide resistance. Furthermore, knocking down SOX2 in C4-2B cells, a derivative of LNCaP cells which is far less sensitive to enzalutamide and which expresses much higher levels of SOX2 than LNCaP cells, did not alter the growth response to this antiandrogen. Thus, our studies indicate that NE marker expression can increase independently of the sensitivity to enzalutamide.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Fatores de Transcrição SOXB1/genética , Antagonistas de Androgênios/metabolismo , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Sistemas Neurossecretores/metabolismo , Nitrilas , Feniltioidantoína/farmacologia , Próstata/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
16.
Int J Cancer ; 146(9): 2619-2627, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509606

RESUMO

Neuropilin-2 (NRP2) is a member of the neuropilin receptor family and known to regulate autophagy and mTORC2 signaling in prostate cancer (PCa). Our study investigated the association of immunohistochemical NRP2 expression with clinicopathological data in PCa patients. For this purpose, we generated a tissue microarray with prostate tissue specimens from 400 PCa patients treated by radical prostatectomy. We focused on patients with high-risk factors such as extraprostatic extension (pT ≥ 3), Gleason score ≥8 and/or the presence of regional lymph node metastases (pN1). Protein levels of NRP2, the vascular endothelial growth factor C (VEGFC) and oncogenic v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) gene as an indicator for TMPRSS2-ERG fusion was assessed in relation to the patients' outcome. NRP2 emerged as an independent prognostic factor for cancer-specific survival (CSS) (hazard ratio 2.360, 95% confidence interval = 1.2-4.8; p = 0.016). Moreover, the association between NRP2 expression and shorter CSS was also especially pronounced in patients at high risk for progression (log-rank test: p = 0.010). We evaluated the association between NRP2 and the TMPRSS2-ERG gene fusion status assessed by immunohistochemical nuclear ERG staining. However, ERG staining alone did not show any prognostic significance. NRP2 immunostaining is significantly associated with shorter CSS in ERG-negative tumors (log-rank test: p = 0.012). No prognostic impact of NRP2 expression on CSS was observed in ERG-positive tumors (log-rank test: p = 0.153). Our study identifies NRP2 as an important prognostic marker for a worse clinical outcome especially in patients with a high-risk PCa and in patients with ERG-negative PCa.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Acinares/mortalidade , Neuropilina-2/metabolismo , Neoplasias da Próstata/mortalidade , Serina Endopeptidases/metabolismo , Idoso , Biomarcadores Tumorais/genética , Carcinoma de Células Acinares/metabolismo , Carcinoma de Células Acinares/patologia , Carcinoma de Células Acinares/cirurgia , Estudos de Casos e Controles , Estudos de Coortes , Progressão da Doença , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neuropilina-2/genética , Prognóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Serina Endopeptidases/genética , Taxa de Sobrevida
17.
Free Radic Biol Med ; 147: 48-60, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31863907

RESUMO

Tumor associated macrophages (TAM) enhance the aggressiveness of breast cancer via promoting cancer cell growth, metastasis, and suppression of the patient's immune system. These TAMs are polarized in breast cancer with features more closely resembling the pro-tumorigenic and immunosuppressive M2 type rather than the anti-tumor and pro-inflammatory M1 type. The goal of our study was to examine primary human monocyte-derived M1 and M2 macrophages for key redox differences and determine sensitivities of these macrophages to the redox-active drug, MnTE-2-PyP5+. This compound reduced levels of M2 markers and inhibited their ability to promote cancer cell growth and suppress T cell activation. The surface levels of the T cell suppressing molecule, PD-L2, were reduced by MnTE-2-PyP5+ in a dose-dependent manner. This study also examined key differences in ROS generation and scavenging between M1 and M2 macrophages. Our results indicate that M2 macrophages have lower levels of reactive oxygen species (ROS) and lower production of extracellular hydrogen peroxide compared to the M1 macrophages. These differences are due in part to reduced expression levels of pro-oxidants, Nox2, Nox5, and the non-enzymatic members of the Nox complex, p22phox and p47phox, as well as higher levels of antioxidant enzymes, Cu/ZnSOD, Gpx1, and catalase. More importantly, we found that despite having lower ROS levels, M2 macrophages require ROS for proper polarization, as addition of hydrogen peroxide increased M2 markers. These TAM-like macrophages are also more sensitive to the ROS modulator and a pan-Nox inhibitor. Both MnTE-2-PyP5+ and DPI inhibited expression levels of M2 marker genes. We have further shown that this inhibition was partly mediated through a decrease in Stat3 activation during IL4-induced M2 polarization. Overall, this study reveals key redox differences between M1 and M2 primary human macrophages and that redox-active drugs can be used to inhibit the pro-tumor and immunosuppressive phenotype of TAM-like M2 macrophages. This study also provides rationale for combining MnTE-2-PyP5+ with immunotherapies.


Assuntos
Ativação de Macrófagos , Macrófagos , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/genética
18.
Sci Rep ; 9(1): 15471, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664117

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality, with new treatment options urgently needed. Neuropilins-1/-2 (NRP1, NRP2) are receptors for semaphorins and angiogenic growth factors, while the GAIP interacting protein C-terminus 1 (GIPC1, aka Synectin) interacts with the neuropilins. They are overexpressed in PDAC and associated with poor survival as well as tumor-promoting activities. Thus, neuropilin and/or GIPC1 silencing may inhibit PDAC growth. In this study, we directly compare the various tumor-inhibitory effects of transient RNAi-mediated depletion of NRP1, NRP2 and GIPC1, alone or in combination, in a set of cell lines with different expression levels. Inhibition of anchorage-dependent and -independent proliferation, colony formation and cell migration, alterations of 3D-spheroid size and shape as well as retardation of cell cycle and induction of apoptosis have been analyzed and found to vary between cell lines. The observed effects are independent of initial expression levels. Knocking down NRP1, NRP2, and GIPC1 alone demonstrates significant effects. Only small additive effects upon combined knockdown and no counter-upregulation of the respective other genes could be detected. Making the study more translational, we show that systemic treatment of PDAC xenograft-bearing mice with polymeric nanoparticles for delivery of specific siRNAs results in tumor inhibition, reduces proliferation, and induces apoptosis. In conclusion, NRP and GIPC1 inhibition emerges as a promising avenue in PDAC treatment due to pleiotropic tumor-inhibitory effects.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Ductal Pancreático/patologia , Inativação Gênica , Neuropilina-1/genética , Neuropilina-2/genética , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/genética , Ciclo Celular/genética , Morte Celular/genética , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , RNA Interferente Pequeno/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncogene ; 38(26): 5265-5280, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30914801

RESUMO

Farnesyl diphosphate synthase (FDPS), a mevalonate pathway enzyme, is highly expressed in several cancers, including prostate cancer (PCa). To date, the mechanistic, functional, and clinical significance of FDPS in cancer remains unexplored. We evaluated the FDPS expression and its cancer-associated phenotypes using in vitro and in vivo methods in PTEN-deficient and sufficient human and mouse PCa cells and tumors. Interestingly, FDPS overexpression synergizes with PTEN deficiency in PTEN conditionally knockout mice (P < 0.05) and expressed significantly higher in human (P < 0.001) PCa tissues, cell lines, and murine tumoroids compared to respective controls. In silico analysis revealed that FDPS is associated with increasing Gleason score, PTEN functionally deficient status, and poor survival of PCa. Ectopic overexpression of FDPS promotes oncogenic phenotypes such as colony formation (P < 0.01) and proliferation (P < 0.01) through activation of AKT and ERK signaling by prenylating Rho A, Rho G, and CDC42 small GTPases. Of interest, knockdown of FDPS in PCa cells exhibits decreased colony growth and proliferation (P < 0.001) by modulating AKT and ERK pathways. Further, genetic and pharmacological inhibition of PI3K but not AKT reduced FDPS expression. Pharmacological targeting of FDPS by zoledronic acid (ZOL), which is already in clinics, exhibit reduced growth and clonogenicity of human and murine PCa cells (P < 0.01) and 3D tumoroids (P < 0.02) by disrupting AKT and ERK signaling through direct interference of small GTPases protein prenylation. Thus, FDPS plays an oncogenic role in PTEN-deficient PCa through GTPase/AKT axis. Identifying mevalonate pathway proteins could serve as a therapeutic target in PTEN dysregulated tumors.


Assuntos
Adenocarcinoma/patologia , Geraniltranstransferase/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adenocarcinoma/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Deleção de Genes , Geraniltranstransferase/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Neoplasias da Próstata/genética , Transdução de Sinais/fisiologia
20.
Front Oncol ; 9: 1461, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038994

RESUMO

Neuropilin-2 (NRP2) is a prognostic indicator for reduced survival in bladder cancer (BCa) patients. Together with its major ligand, vascular endothelial growth factor (VEGF)-C, NRP2 expression is a predictive factor for treatment outcome in response to radiochemotherapy in BCa patients who underwent transurethral resection. Therefore, we investigated the benefit of combining cisplatin-based chemotherapy with irradiation treatment in the BCa cell line RT112 exhibiting or lacking endogenous NRP2 expression in order to evaluate NRP2 as potential therapeutic target. We have identified a high correlation of NRP2 and the glioma-associated oncogene family zinc finger 2 (GLI2) transcripts in the cancer genome atlas (TCGA) cohort of BCa patients and a panel of 15 human BCa cell lines. Furthermore, we used in vitro BCa models to show the transforming growth factor-beta 1 (TGFß1)-dependent regulation of NRP2 and GLI2 expression levels. Since NRP2 was shown to bind TGFß1, associate with TGFß receptors, and enhance TGFß1 signaling, we evaluated downstream signaling pathways using an epithelial-to-mesenchymal transition (EMT)-assay in combination with a PCR profiling array containing 84 genes related to EMT. Subsequent target validation in NRP2 knockout and knockdown models revealed secreted phosphoprotein 1 (SPP1/OPN/Osteopontin) as a downstream target positively regulated by NRP2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA