Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2320962121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980904

RESUMO

Turbulent flows have been used for millennia to mix solutes; a familiar example is stirring cream into coffee. However, many energy, environmental, and industrial processes rely on the mixing of solutes in porous media where confinement suppresses inertial turbulence. As a result, mixing is drastically hindered, requiring fluid to permeate long distances for appreciable mixing and introducing additional steps to drive mixing that can be expensive and environmentally harmful. Here, we demonstrate that this limitation can be overcome just by adding dilute amounts of flexible polymers to the fluid. Flow-driven stretching of the polymers generates an elastic instability, driving turbulent-like chaotic flow fluctuations, despite the pore-scale confinement that prohibits typical inertial turbulence. Using in situ imaging, we show that these fluctuations stretch and fold the fluid within the pores along thin layers ("lamellae") characterized by sharp solute concentration gradients, driving mixing by diffusion in the pores. This process results in a [Formula: see text] reduction in the required mixing length, a [Formula: see text] increase in solute transverse dispersivity, and can be harnessed to increase the rate at which chemical compounds react by [Formula: see text]-enhancements that we rationalize using turbulence-inspired modeling of the underlying transport processes. Our work thereby establishes a simple, robust, versatile, and predictive way to mix solutes in porous media, with potential applications ranging from large-scale chemical production to environmental remediation.

2.
Soft Matter ; 20(30): 5859-5888, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39012310

RESUMO

The soft part of the Earth's surface - the ground beneath our feet - constitutes the basis for life and natural resources, yet a general physical understanding of the ground is still lacking. In this critical time of climate change, cross-pollination of scientific approaches is urgently needed to better understand the behavior of our planet's surface. The major topics in current research in this area cross different disciplines, spanning geosciences, and various aspects of engineering, material sciences, physics, chemistry, and biology. Among these, soft matter physics has emerged as a fundamental nexus connecting and underpinning many research questions. This perspective article is a multi-voice effort to bring together different views and approaches, questions and insights, from researchers that work in this emerging area, the soft matter physics of the ground beneath our feet. In particular, we identify four major challenges concerned with the dynamics in and of the ground: (I) modeling from the grain scale, (II) near-criticality, (III) bridging scales, and (IV) life. For each challenge, we present a selection of topics by individual authors, providing specific context, recent advances, and open questions. Through this, we seek to provide an overview of the opportunities for the broad Soft Matter community to contribute to the fundamental understanding of the physics of the ground, strive towards a common language, and encourage new collaborations across the broad spectrum of scientists interested in the matter of the Earth's surface.

3.
Soft Matter ; 20(24): 4795-4805, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38847805

RESUMO

Bacteriophages ("phages") are viruses that infect bacteria. Since they do not actively self-propel, phages rely on thermal diffusion to find target cells-but can also be advected by fluid flows, such as those generated by motile bacteria themselves in bulk fluids. How does the flow field generated by a swimming bacterium influence how it encounters phages? Here, we address this question using coupled molecular dynamics and lattice Boltzmann simulations of flagellated bacteria swimming through a bulk fluid containing uniformly-dispersed phages. We find that while swimming increases the rate at which phages attach to both the cell body and flagellar propeller, hydrodynamic interactions strongly suppress this increase at the cell body, but conversely enhance this increase at the flagellar bundle. Our results highlight the pivotal influence of hydrodynamics on the interactions between bacteria and phages, as well as other diffusible species, in microbial environments.


Assuntos
Bacteriófagos , Hidrodinâmica , Bacteriófagos/fisiologia , Flagelos/fisiologia , Bactérias/virologia , Simulação de Dinâmica Molecular , Ligação Viral , Movimento
4.
bioRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712130

RESUMO

Many bacteria live in polymeric fluids, such as mucus, environmental polysaccharides, and extracellular polymers in biofilms. However, lab studies typically focus on cells in polymer-free fluids. Here, we show that interactions with polymers shape a fundamental feature of bacterial life-how they proliferate in space in multicellular colonies. Using experiments, we find that when polymer is sufficiently concentrated, cells generically and reversibly form large serpentine "cables" as they proliferate. By combining experiments with biophysical theory and simulations, we demonstrate that this distinctive form of colony morphogenesis arises from an interplay between polymer-induced entropic attraction between neighboring cells and their hindered ability to diffusely separate from each other in a viscous polymer solution. Our work thus reveals a pivotal role of polymers in sculpting proliferating bacterial colonies, with implications for how they interact with hosts and with the natural environment, and uncovers quantitative principles governing colony morphogenesis in such complex environments.

5.
Biophys J ; 123(8): 957-967, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38454600

RESUMO

Many bacterial habitats-ranging from gels and tissues in the body to cell-secreted exopolysaccharides in biofilms-are rheologically complex, undergo dynamic external forcing, and have unevenly distributed nutrients. How do these features jointly influence how the resident cells grow and proliferate? Here, we address this question by studying the growth of Escherichia coli dispersed in granular hydrogel matrices with defined and highly tunable structural and rheological properties, under different amounts of external forcing imposed by mechanical shaking, and in both aerobic and anaerobic conditions. Our experiments establish a general principle: that the balance between the yield stress of the environment that the cells inhabit, σy, and the external stress imposed on the environment, σ, modulates bacterial growth by altering transport of essential nutrients to the cells. In particular, when σy<σ, the environment is easily fluidized and mixed over large scales, providing nutrients to the cells and sustaining complete cellular growth. By contrast, when σy>σ, the elasticity of the environment suppresses large-scale fluid mixing, limiting nutrient availability and arresting cellular growth. Our work thus reveals a new mechanism, beyond effects that change cellular behavior via local forcing, by which the rheology of the environment may modulate microbial physiology in diverse natural and industrial settings.


Assuntos
Escherichia coli , Escherichia coli/fisiologia
6.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314825

RESUMO

Bacteria are ubiquitous in complex three-dimensional (3D) porous environments, such as biological tissues and gels, and subsurface soils and sediments. However, the majority of previous work has focused on studies of cells in bulk liquids or at flat surfaces, which do not fully recapitulate the complexity of many natural bacterial habitats. Here, this gap in knowledge is addressed by describing the development of a method to 3D-print dense colonies of bacteria into jammed granular hydrogel matrices. These matrices have tunable pore sizes and mechanical properties; they physically confine the cells, thus supporting them in 3D. They are optically transparent, allowing for direct visualization of bacterial spreading through their surroundings using imaging. As a proof of this principle, here, the capability of this protocol is demonstrated by 3D printing and imaging non-motile and motile Vibro cholerae, as well as non-motile Escherichia coli, in jammed granular hydrogel matrices with varying interstitial pore sizes.


Assuntos
Bactérias , Hidrogéis , Porosidade , Impressão Tridimensional , Escherichia coli
7.
Soft Matter ; 20(7): 1425-1437, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38252539

RESUMO

Obstructions influence the growth and expansion of bodies in a wide range of settings-but isolating and understanding their impact can be difficult in complex environments. Here, we study obstructed growth/expansion in a model system accessible to experiments, simulations, and theory: hydrogels swelling around fixed cylindrical obstacles with varying geometries. When the obstacles are large and widely-spaced, hydrogels swell around them and remain intact. In contrast, our experiments reveal that when the obstacles are narrow and closely-spaced, hydrogels fracture as they swell. We use finite element simulations to map the magnitude and spatial distribution of stresses that build up during swelling at equilibrium in a 2D model, providing a route toward predicting when this phenomenon of self-fracturing is likely to arise. Applying lessons from indentation theory, poroelasticity, and nonlinear continuum mechanics, we also develop a theoretical framework for understanding how the maximum principal tensile and compressive stresses that develop during swelling are controlled by obstacle geometry and material parameters. These results thus help to shed light on the mechanical principles underlying growth/expansion in environments with obstructions.

8.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37961366

RESUMO

In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains-which in turn influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially-structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth, or unstable and develops finger-like protrusions. We establish quantitative principles describing when these different interfacial behaviors arise, and find good agreement both with the results of previous experimental reports as well as new experiments performed here. Our work thus helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities, as well as a broader range of proliferating active systems.

9.
bioRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37786699

RESUMO

The interactions between bacteria and phages-viruses that infect bacteria-play critical roles in agriculture, ecology, and medicine; however, how these interactions influence the spatial organization of both bacteria and phages remain largely unexplored. Here, we address this gap in knowledge by developing a theoretical model of motile, proliferating bacteria that aggregate via motility-induced phase separation (MIPS) and encounter phage that infect and lyse the cells. We find that the non-reciprocal predator-prey interactions between phage and bacteria strongly alter spatial organization, in some cases giving rise to a rich array of finite-scale stationary and dynamic patterns in which bacteria and phage coexist. We establish principles describing the onset and characteristics of these diverse behaviors, thereby helping to provide a biophysical basis for understanding pattern formation in bacteria-phage systems, as well as in a broader range of active and living systems with similar predator-prey or other non-reciprocal interactions.

10.
JACS Au ; 3(10): 2772-2779, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885595

RESUMO

Hydrogels are compelling materials for emerging applications including soft robotics and autonomous sensing. Mechanical stability over an extensive range of environmental conditions and considerations of sustainability, both environmentally benign processing and end-of-life use, are enduring challenges. To make progress on these challenges, we designed a dehydration-hydration approach to transform soft and weak hydrogels into tough and recyclable supramolecular phase-separated gels (PSGs) using water as the only solvent. The dehydration-hydration approach led to phase separation and the formation of domains consisting of strong polymer-polymer interactions that are critical for forming PSGs. The phase-separated segments acted as robust, physical cross-links to strengthen PSGs, which exhibited enhanced toughness and stretchability in its fully swollen state. PSGs are not prone to overswelling or severe shrinkage in wet conditions and show environmental tolerance in harsh conditions, e.g., solutions with pH between 1 and 14. Finally, we demonstrate the use of PSGs as strain sensors in air and aqueous environments.

11.
Soft Matter ; 19(37): 7184-7191, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37705404

RESUMO

We recast the problem of hydrogel swelling under physical constraints as an energy optimization problem. We apply this approach to compute equilibrium shapes of hydrogel spheres confined within a jammed matrix of rigid beads and interpret the results to determine how confinement modifies the mechanics of swollen hydrogels. In contrast to the unconfined case, we find a spatial separation of strains within the bulk of the hydrogel as the strain becomes localized to an outer region. We also explore the contact mechanics of the gel, finding a transition from Hertzian behavior to non-Hertzian behavior as a function of swelling. Our model, implemented in the Morpho shape optimization environment and validated against an experimentally demonstrated prototypical scenario, can be applied in any dimension, readily adapted to diverse swelling scenarios and extended to use other energies in conjunction.

12.
Phys Rev Lett ; 131(11): 118301, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774273

RESUMO

Collectives of actively moving particles can spontaneously separate into dilute and dense phases-a fascinating phenomenon known as motility-induced phase separation (MIPS). MIPS is well-studied for randomly moving particles with no directional bias. However, many forms of active matter exhibit collective chemotaxis, directed motion along a chemical gradient that the constituent particles can generate themselves. Here, using theory and simulations, we demonstrate that collective chemotaxis strongly competes with MIPS-in some cases, arresting or completely suppressing phase separation, or in other cases, generating fundamentally new dynamic instabilities. We establish principles describing this competition, thereby helping to reveal and clarify the rich physics underlying active matter systems that perform chemotaxis, ranging from cells to robots.

13.
Nat Commun ; 14(1): 6085, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37770446

RESUMO

Complex fibrillar networks mediate liquid-liquid phase separation of biomolecular condensates within the cell. Mechanical interactions between these condensates and the surrounding networks are increasingly implicated in the physiology of the condensates and yet, the physical principles underlying phase separation within intracellular media remain poorly understood. Here, we elucidate the dynamics and mechanics of liquid-liquid phase separation within fibrillar networks by condensing oil droplets within biopolymer gels. We find that condensates constrained within the network pore space grow in abrupt temporal bursts. The subsequent restructuring of condensates and concomitant network deformation is contingent on the fracture of network fibrils, which is determined by a competition between condensate capillarity and network strength. As a synthetic analog to intracellular phase separation, these results further our understanding of the mechanical interactions between biomolecular condensates and fibrillar networks in the cell.


Assuntos
Citoesqueleto , Fraturas Ósseas , Humanos , Condensados Biomoleculares , Ação Capilar
14.
Nat Rev Phys ; : 1-13, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37360681

RESUMO

The fascinating patterns of collective motion created by autonomously driven particles have fuelled active-matter research for over two decades. So far, theoretical active-matter research has often focused on systems with a fixed number of particles. This constraint imposes strict limitations on what behaviours can and cannot emerge. However, a hallmark of life is the breaking of local cell number conservation by replication and death. Birth and death processes must be taken into account, for example, to predict the growth and evolution of a microbial biofilm, the expansion of a tumour, or the development from a fertilized egg into an embryo and beyond. In this Perspective, we argue that unique features emerge in these systems because proliferation represents a distinct form of activity: not only do the proliferating entities consume and dissipate energy, they also inject biomass and degrees of freedom capable of further self-proliferation, leading to myriad dynamic scenarios. Despite this complexity, a growing number of studies document common collective phenomena in various proliferating soft-matter systems. This generality leads us to propose proliferation as another direction of active-matter physics, worthy of a dedicated search for new dynamical universality classes. Conceptual challenges abound, from identifying control parameters and understanding large fluctuations and nonlinear feedback mechanisms to exploring the dynamics and limits of information flow in self-replicating systems. We believe that, by extending the rich conceptual framework developed for conventional active matter to proliferating active matter, researchers can have a profound impact on quantitative biology and reveal fascinating emergent physics along the way.

15.
Phys Rev Lett ; 130(12): 128204, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027860

RESUMO

We use a theoretical model to explore how fluid dynamics, in particular, the pressure gradient and wall shear stress in a channel, affect the deposition of particles flowing in a microfluidic network. Experiments on transport of colloidal particles in pressure-driven systems of packed beads have shown that at lower pressure drop, particles deposit locally at the inlet, while at higher pressure drop, they deposit uniformly along the direction of flow. We develop a mathematical model and use agent-based simulations to capture these essential qualitative features observed in experiments. We explore the deposition profile over a two-dimensional phase diagram defined in terms of the pressure and shear stress threshold, and show that two distinct phases exist. We explain this apparent phase transition by drawing an analogy to simple one-dimensional mass-aggregation models in which the phase transition is calculated analytically.

16.
NPJ Biofilms Microbiomes ; 9(1): 11, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959210

RESUMO

Human microbiome composition is closely tied to health, but how the host manages its microbial inhabitants remains unclear. One important, but understudied, factor is the natural host environment: mucus, which contains gel-forming glycoproteins (mucins) that display hundreds of glycan structures with potential regulatory function. Leveraging a tractable culture-based system to study how mucins influence oral microbial communities, we found that mucin glycans enable the coexistence of diverse microbes, while resisting disease-associated compositional shifts. Mucins from tissues with unique glycosylation differentially tuned microbial composition, as did isolated mucin glycan libraries, uncovering the importance of specific glycan patterns in microbiome modulation. We found that mucins shape microbial communities in several ways: serving as nutrients to support metabolic diversity, organizing spatial structure through reduced aggregation, and possibly limiting antagonism between competing taxa. Overall, this work identifies mucin glycans as a natural host mechanism and potential therapeutic intervention to maintain healthy microbial communities.


Assuntos
Microbiota , Mucinas , Humanos , Mucinas/química , Mucinas/metabolismo , Glicosilação , Muco/metabolismo , Polissacarídeos/metabolismo
17.
ACS Cent Sci ; 9(2): 177-185, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36844496

RESUMO

Hydrogels are promising soft materials for energy and environmental applications, including sustainable and off-grid water purification and harvesting. A current impediment to technology translation is the low water production rate well below daily human demand. To overcome this challenge, we designed a rapid-response, antifouling, loofah-inspired solar absorber gel (LSAG) capable of producing potable water from various contaminated sources at a rate of ∼26 kg m-2 h-1, which is sufficient to meet daily water demand. The LSAG-produced at room temperature via aqueous processing using an ethylene glycol (EG)-water mixture-uniquely integrates the attributes of poly(N-isopropylacrylamide) (PNIPAm), polydopamine (PDA), and poly(sulfobetaine methacrylate) (PSBMA) to enable off-grid water purification with enhanced photothermal response and the capacity to prevent oil fouling and biofouling. The use of the EG-water mixture was critical to forming the loofah-like structure with enhanced water transport. Remarkably, under sunlight irradiations of 1 and 0.5 sun, the LSAG required only 10 and 20 min to release ∼70% of its stored liquid water, respectively. Equally important, we demonstrate the ability of LSAG to purify water from various harmful sources, including those containing small molecules, oils, metals, and microplastics.

18.
Lab Chip ; 23(5): 1358-1375, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789954

RESUMO

Transitioning our society to a sustainable future, with low or net-zero carbon emissions to the atmosphere, will require a wide-spread transformation of energy and environmental technologies. In this perspective article, we describe how lab-on-a-chip (LoC) systems can help address this challenge by providing insight into the fundamental physical and geochemical processes underlying new technologies critical to this transition, and developing the new processes and materials required. We focus on six areas: (I) subsurface carbon sequestration, (II) subsurface hydrogen storage, (III) geothermal energy extraction, (IV) bioenergy, (V) recovering critical materials, and (VI) water filtration and remediation. We hope to engage the LoC community in the many opportunities within the transition ahead, and highlight the potential of LoC approaches to the broader community of researchers, industry experts, and policy makers working toward a low-carbon future.

19.
ACS Appl Bio Mater ; 5(11): 5310-5320, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36288477

RESUMO

To mitigate antimicrobial resistance, we developed polymeric nanocarrier delivery of the chemorepellent signaling agent, nickel, to interfere with Escherichia coli transport to a surface, an incipient biofilm formation stage. The dynamics of nickel nanocarrier (Ni NC) chemorepellent release and induced chemorepellent response required to effectively modulate bacterial transport for biofilm prevention were characterized in this work. Ni NCs were fabricated with the established Flash NanoPrecipitation method. NC size was characterized with dynamic light scattering. Measured with a zincon monosodium salt colorimetric assay, NC nickel release was pH-dependent, with 62.5% of total encapsulated nickel released at pH 7 within 0-15 min, competitive with rapid E. coli transport to the surface. Confocal laser scanning microscopy of E. coli (GFP-expressing) biofilm growth dynamics on fluorescently labeled Ni NC coated glass coupled with a theoretical dynamical criterion probed the biofilm prevention outcomes of NC design. The Ni NC coating significantly reduced E. coli attachment compared to a soluble nickel coating and reduced E. coli biomass area by 61% compared to uncoated glass. A chemical-in-plug assay revealed Ni NCs induced a chemorepellent response in E. coli. A characteristic E. coli chemorepellent response was observed away from the Ni NC coated glass over 10 µm length scales effective to prevent incipient biofilm surface attachment. The dynamical criterion provided semiquantitative analysis of NC mechanisms to control biofilm and informed optimal chemorepellent release profiles to improve NC biofilm inhibition. This work is fundamental for dynamical informed design of biofilm-inhibiting chemorepellent-loaded NCs promising to mitigate the development of resistance and interfere with the transport of specific pathogens.


Assuntos
Escherichia coli , Níquel , Níquel/farmacologia , Biofilmes , Polímeros/farmacologia
20.
Proc Natl Acad Sci U S A ; 119(43): e2208019119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36256809

RESUMO

How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size-eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an "active fluid" whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies-as well as other forms of growing active matter, such as tumors and engineered living materials-in 3D environments.


Assuntos
Bactérias , Modelos Biológicos , Morfogênese , Hidrogéis , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA