Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Med Chem ; 67(8): 6549-6569, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604131

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.


Assuntos
Inibidores de Proteínas Quinases , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Relação Estrutura-Atividade , Microssomos Hepáticos/metabolismo
2.
J Med Chem ; 66(11): 7304-7330, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37226670

RESUMO

The ATM kinase is a promising target in cancer treatment as an important regulator of the cellular response to DNA double-strand breaks. In this work, we present a new class of specific benzimidazole-based ATM inhibitors with picomolar potency against the isolated enzyme and favorable selectivity within relative PIKK and PI3K kinases. We could identify two promising inhibitor subgroups with significantly different physicochemical properties, which we developed simultaneously. These efforts lead to numerous highly active inhibitors with picomolar enzymatic activities. Furthermore, initial low cellular activities on A549 cells could be increased significantly in numerous examples resulting in cellular IC50 values in the subnanomolar range. Further characterization of the highly potent inhibitors 90 und 93 revealed promising pharmacokinetic properties and strong activities in organoids in combination with etoposide. Additionally, 93 showed no off-target activities within a kinome-representative mini kinase panel, with favorable selectivities within the PIKK- and PI3K-families.


Assuntos
Benzimidazóis , Piridinas , Humanos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Etoposídeo , Piridinas/farmacologia , Benzimidazóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Mutadas de Ataxia Telangiectasia
3.
J Hepatol ; 79(1): 141-149, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36906109

RESUMO

BACKGROUND & AIMS: Primary liver cancer (PLC) comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), two frequent and lethal tumour types that differ regarding their tumour biology and responses to cancer therapies. Liver cells harbour a high degree of cellular plasticity and can give rise to either HCC or iCCA. However, little is known about the cell-intrinsic mechanisms directing an oncogenically transformed liver cell to either HCC or iCCA. The scope of this study was to identify cell-intrinsic factors determining lineage commitment in PLC. METHODS: Cross-species transcriptomic and epigenetic profiling was applied to murine HCCs and iCCAs and to two human PLC cohorts. Integrative data analysis comprised epigenetic Landscape In Silico deletion Analysis (LISA) of transcriptomic data and Hypergeometric Optimization of Motif EnRichment (HOMER) analysis of chromatin accessibility data. Identified candidate genes were subjected to functional genetic testing in non-germline genetically engineered PLC mouse models (shRNAmir knockdown or overexpression of full-length cDNAs). RESULTS: Integrative bioinformatic analyses of transcriptomic and epigenetic data pinpointed the Forkhead-family transcription factors FOXA1 and FOXA2 as MYC-dependent determination factors of the HCC lineage. Conversely, the ETS family transcription factor ETS1 was identified as a determinant of the iCCA lineage, which was found to be suppressed by MYC during HCC development. Strikingly, shRNA-mediated suppression of FOXA1 and FOXA2 with concomitant ETS1 expression fully switched HCC to iCCA development in PLC mouse models. CONCLUSIONS: The herein reported data establish MYC as a key determinant of lineage commitment in PLC and provide a molecular explanation why common liver-damaging risk factors such as alcoholic or non-alcoholic steatohepatitis can lead to either HCC or iCCA. IMPACT AND IMPLICATIONS: Liver cancer is a major health problem and comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), two frequent and lethal tumour types that differ regarding their morphology, tumour biology, and responses to cancer therapies. We identified the transcription factor and oncogenic master regulator MYC as a switch between HCC and iCCA development. When MYC levels are high at the time point when a hepatocyte becomes a tumour cell, an HCC is growing out. Conversely, if MYC levels are low at this time point, the result is the outgrowth of an iCCA. Our study provides a molecular explanation why common liver-damaging risk factors such as alcoholic or non-alcoholic steatohepatitis can lead to either HCC or iCCA. Furthermore, our data harbour potential for the development of better PLC therapies.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Fatores de Transcrição/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia
5.
Cancers (Basel) ; 14(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053620

RESUMO

The major tumor suppressor P53 (TP53) acts primarily as a transcription factor by activating or repressing subsets of its numerous target genes, resulting in different cellular outcomes (e.g., cell cycle arrest, apoptosis and senescence). P53-dependent gene regulation is linked to several aspects of chromatin remodeling; however, regulation of chromatin-modifying enzymes by P53 is poorly understood in hepatocarcinogenesis. Herein, we identified Helicase, lymphoid specific (HELLS), a major epigenetic regulator in liver cancer, as a strong and selective P53 repression target within the SNF2-like helicase family. The underlying regulatory mechanism involved P53-dependent induction of P21 (CDKN1A), leading to repression of Forkhead Box Protein M1 (FOXM1) that in turn resulted in downregulation of HELLS expression. Supporting our in vitro data, we found higher expression of HELLS in murine HCCs arising in a Trp53-/- background compared to Trp53+/+ HCCs as well as a strong and highly significant correlation between HELLS and FOXM1 expression in different HCC patient cohorts. Our data suggest that functional or mutational inactivation of P53 substantially contributes to overexpression of HELLS in HCC patients and indicates a previously unstudied aspect of P53's ability to suppress liver cancer formation.

6.
Br J Cancer ; 125(11): 1459-1461, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34302061

RESUMO

Metabolic alterations occur frequently in solid tumours, but metabolic cancer therapies are limited by the complexity and plasticity of metabolic networks. We could recently show that activation of the liver X receptor alpha (LXRα) and inhibition of a Raf-1-SCD1 protein complex induces an intracellular accumulation of saturated free fatty acids leading to lethal lipotoxicity in tumour cells and allows for an efficient treatment of liver carcinomas.


Assuntos
Neoplasias Hepáticas/terapia , Receptores X do Fígado/uso terapêutico , Humanos
7.
Nat Cancer ; 2(2): 201-217, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-35122079

RESUMO

The success of molecular therapies targeting specific metabolic pathways in cancer is often limited by the plasticity and adaptability of metabolic networks. Here we show that pharmacologically induced lipotoxicity represents a promising therapeutic strategy for the treatment of hepatocellular carcinoma (HCC). LXRα-induced liponeogenesis and Raf-1 inhibition are synthetic lethal in HCC owing to a toxic accumulation of saturated fatty acids. Raf-1 was found to bind and activate SCD1, and conformation-changing DFG-out Raf inhibitors could disrupt this interaction, thereby blocking fatty acid desaturation and inducing lethal lipotoxicity. Studies in genetically engineered and nonalcoholic steatohepatitis-induced HCC mouse models and xenograft models of human HCC revealed that therapies comprising LXR agonists and Raf inhibitors were well tolerated and capable of overcoming therapy resistance in HCC. Conceptually, our study suggests pharmacologically induced lipotoxicity as a new mode for metabolic targeting of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
Eur J Med Chem ; 208: 112721, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035818

RESUMO

The p38 MAPK cascade is a key signaling pathway linked to a multitude of physiological functions and of central importance in inflammatory and autoimmune diseases. Although studied extensively, little is known about how conformation-specific inhibitors alter signaling outcomes. Here, we have explored the highly dynamic back pocket of p38 MAPK with allosteric urea fragments. However, screening against known off-targets showed that these fragments maintained the selectivity issues of their parent compound BIRB-796, while combination with the hinge-binding motif of VPC-00628 greatly enhanced inhibitor selectivity. Further efforts focused therefore on the exploration of the αC-out pocket of p38 MAPK, yielding compound 137 as a highly selective type-II inhibitor. Even though 137 is structurally related to a recent p38 type-II chemical probe, SR-318, the data presented here provide valuable insights into back-pocket interactions that are not addressed in SR-318 and it provides an alternative chemical tool with good cellular activity targeting also the p38 back pocket.


Assuntos
Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Regulação Alostérica , Sítio Alostérico , Animais , Linhagem Celular Tumoral , Fluorometria , Células HEK293 , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Nat Commun ; 11(1): 1335, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165639

RESUMO

Immune checkpoint blockade (ICB)-based or natural cancer immune responses largely eliminate tumours. Yet, they require additional mechanisms to arrest those cancer cells that are not rejected. Cytokine-induced senescence (CIS) can stably arrest cancer cells, suggesting that interferon-dependent induction of senescence-inducing cell cycle regulators is needed to control those cancer cells that escape from killing. Here we report in two different cancers sensitive to T cell-mediated rejection, that deletion of the senescence-inducing cell cycle regulators p16Ink4a/p19Arf (Cdkn2a) or p21Cip1 (Cdkn1a) in the tumour cells abrogates both the natural and the ICB-induced cancer immune control. Also in humans, melanoma metastases that progressed rapidly during ICB have losses of senescence-inducing genes and amplifications of senescence inhibitors. Metastatic cells also resist CIS. Such genetic and functional alterations are infrequent in metastatic melanomas regressing during ICB. Thus, activation of tumour-intrinsic, senescence-inducing cell cycle regulators is required to stably arrest cancer cells that escape from eradication.


Assuntos
Ciclo Celular , Senescência Celular , Interferons/metabolismo , Melanoma/imunologia , Melanoma/patologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Imunoterapia , Antígeno Ki-67/metabolismo , Linfonodos/patologia , Melanoma/terapia , Melanoma/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/metabolismo , Análise de Sobrevida , Carga Tumoral
10.
Nat Metab ; 1(11): 1074-1088, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31799499

RESUMO

Senescence is a cellular stress response that results in the stable arrest of old, damaged or preneoplastic cells. Oncogene-induced senescence is tumor suppressive but can also exacerbate tumorigenesis through the secretion of pro-inflammatory factors from senescent cells. Drugs that selectively kill senescent cells, termed senolytics, have proved beneficial in animal models of many age-associated diseases. Here, we show that the cardiac glycoside, ouabain, is a senolytic agent with broad activity. Senescent cells are sensitized to ouabain-induced apoptosis, a process mediated in part by induction of the pro-apoptotic Bcl2-family protein NOXA. We show that cardiac glycosides synergize with anti-cancer drugs to kill tumor cells and eliminate senescent cells that accumulate after irradiation or in old mice. Ouabain also eliminates senescent preneoplastic cells. Our findings suggest that cardiac glycosides may be effective anti-cancer drugs by acting through multiple mechanism. Given the broad range of senescent cells targeted by cardiac glycosides their use against age-related diseases warrants further exploration.


Assuntos
Glicosídeos Cardíacos/farmacologia , Senescência Celular/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Humanos , Camundongos , Ouabaína/farmacologia , Quercetina/farmacologia , Ratos
11.
Nat Commun ; 10(1): 2147, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089132

RESUMO

Cancer-relevant signalling pathways rely on bidirectional nucleocytoplasmic transport events through the nuclear pore complex (NPC). However, mechanisms by which individual NPC components (Nups) participate in the regulation of these pathways remain poorly understood. We discover by integrating large scale proteomics, polysome fractionation and a focused RNAi approach that Nup155 controls mRNA translation of p21 (CDKN1A), a key mediator of the p53 response. The underlying mechanism involves transcriptional regulation of the putative tRNA and rRNA methyltransferase FTSJ1 by Nup155. Furthermore, we observe that Nup155 and FTSJ1 are p53 repression targets and accordingly find a correlation between the p53 status, Nup155 and FTSJ1 expression in murine and human hepatocellular carcinoma. Our data suggest an unanticipated regulatory network linking translational control by and repression of a structural NPC component modulating the p53 pathway through its effectors.


Assuntos
Carcinoma Hepatocelular/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Conjuntos de Dados como Assunto , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Metiltransferases/metabolismo , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/metabolismo
12.
Nat Med ; 25(4): 641-655, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936549

RESUMO

Non-alcoholic fatty liver disease ranges from steatosis to non-alcoholic steatohepatitis (NASH), potentially progressing to cirrhosis and hepatocellular carcinoma (HCC). Here, we show that platelet number, platelet activation and platelet aggregation are increased in NASH but not in steatosis or insulin resistance. Antiplatelet therapy (APT; aspirin/clopidogrel, ticagrelor) but not nonsteroidal anti-inflammatory drug (NSAID) treatment with sulindac prevented NASH and subsequent HCC development. Intravital microscopy showed that liver colonization by platelets depended primarily on Kupffer cells at early and late stages of NASH, involving hyaluronan-CD44 binding. APT reduced intrahepatic platelet accumulation and the frequency of platelet-immune cell interaction, thereby limiting hepatic immune cell trafficking. Consequently, intrahepatic cytokine and chemokine release, macrovesicular steatosis and liver damage were attenuated. Platelet cargo, platelet adhesion and platelet activation but not platelet aggregation were identified as pivotal for NASH and subsequent hepatocarcinogenesis. In particular, platelet-derived GPIbα proved critical for development of NASH and subsequent HCC, independent of its reported cognate ligands vWF, P-selectin or Mac-1, offering a potential target against NASH.


Assuntos
Plaquetas/metabolismo , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Citocinas/metabolismo , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Transgênicos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Contagem de Plaquetas
13.
PLoS Comput Biol ; 14(9): e1006458, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30199525

RESUMO

A mutated KRAS protein is frequently observed in human cancers. Traditionally, the oncogenic properties of KRAS missense mutants at position 12 (G12X) have been considered as equal. Here, by assessing the probabilities of occurrence of all KRAS G12X mutations and KRAS dynamics we show that this assumption does not hold true. Instead, our findings revealed an outstanding mutational bias. We conducted a thorough mutational analysis of KRAS G12X mutations and assessed to what extent the observed mutation frequencies follow a random distribution. Unique tissue-specific frequencies are displayed with specific mutations, especially with G12R, which cannot be explained by random probabilities. To clarify the underlying causes for the nonrandom probabilities, we conducted extensive atomistic molecular dynamics simulations (170 µs) to study the differences of G12X mutations on a molecular level. The simulations revealed an allosteric hydrophobic signaling network in KRAS, and that protein dynamics is altered among the G12X mutants and as such differs from the wild-type and is mutation-specific. The shift in long-timescale conformational dynamics was confirmed with Markov state modeling. A G12X mutation was found to modify KRAS dynamics in an allosteric way, which is especially manifested in the switch regions that are responsible for the effector protein binding. The findings provide a basis to understand better the oncogenic properties of KRAS G12X mutants and the consequences of the observed nonrandom frequencies of specific G12X mutations.


Assuntos
Genes ras , Mutação de Sentido Incorreto , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise Mutacional de DNA , Guanosina Difosfato/química , Guanosina Trifosfato/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Cadeias de Markov , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Análise de Componente Principal , Probabilidade
14.
Mol Cell Proteomics ; 17(4): 810-825, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363612

RESUMO

The interpatient variability of tumor proteomes has been investigated on a large scale but many tumors display also intratumoral heterogeneity regarding morphological and genetic features. It remains largely unknown to what extent the local proteome of tumors intrinsically differs. Here, we used hepatocellular carcinoma as a model system to quantify both inter- and intratumor heterogeneity across human patient specimens with spatial resolution. We defined proteomic features that distinguish neoplastic from the directly adjacent nonneoplastic tissue, such as decreased abundance of NADH dehydrogenase complex I. We then demonstrated the existence of intratumoral variations in protein abundance that re-occur across different patient samples, and affect clinically relevant proteins, even in the absence of obvious morphological differences or genetic alterations. Our work demonstrates the suitability and the benefits of using mass spectrometry-based proteomics to analyze diagnostic tumor specimens with spatial resolution. Data are available via ProteomeXchange with identifier PXD007052.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Pessoa de Meia-Idade , Proteômica
15.
Angew Chem Int Ed Engl ; 56(19): 5363-5367, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28397331

RESUMO

Skepinone-L was recently reported to be a p38α MAP kinase inhibitor with high potency and excellent selectivity in vitro and in vivo. However, this class of compounds still act as fully ATP-competitive Type I binders which, furthermore, suffer from short residence times at the enzyme. We herein describe a further development with the first Type I1/2 binders for p38α MAP kinase. Type I1/2 inhibitors interfere with the R-spine, inducing a glycine flip and occupying both hydrophobic regions I and II. This design approach leads to prolonged target residence time, binding to both the active and inactive states of the kinase, excellent selectivity, excellent potency on the enzyme level, and low nanomolar activity in a human whole blood assay. This promising binding mode is proven by X-ray crystallography.


Assuntos
Dibenzocicloeptenos/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Dibenzocicloeptenos/síntese química , Dibenzocicloeptenos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Fatores de Tempo
16.
Am J Pathol ; 187(2): 228-235, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27939741

RESUMO

Disruption of the tumor-suppressive p53 network is a key event in human malignancies, including primary liver cancer. In response to different types of stress, p53 mediates several antiproliferative cellular outcomes, such as cell cycle arrest, apoptosis, and senescence, by activation or repression of its target genes. Metabolic alterations initiating or being part of the p53 response have become an actively studied research area in the p53 field, with several aspects that still remain to be elucidated. Herein, we identified GMP synthetase (GMPS), a key enzyme of de novo purine biosynthesis, as an important p53 repression target using a large-scale proteomics approach. This p53-mediated repression of GMPS could be validated by immunoblotting in Sk-Hep1, HepG2, and HuH6 cells. Moreover, we found GMPS transcriptionally repressed in a p21-dependent manner and its repression maintained in the context of p53-mediated cellular senescence. More important, direct knockdown of GMPS by RNA interference resulted in reduced cell viability and was sufficient to trigger cellular senescence. Finally, by comparing murine hepatocellular carcinomas, which developed in p53 wild-type (+/+) versus p53 null (-/-) mice, we observed higher GMPS expression in the latter, supporting the in vivo relevance of our findings. We conclude that repression of GMPS by p53 through p21 is a functionally relevant part of the p53-mediated senescence program limiting tumor cell growth in liver cancer.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Carcinoma Hepatocelular/metabolismo , Senescência Celular/fisiologia , Neoplasias Hepáticas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Cromatografia Líquida , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Immunoblotting , Camundongos , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Transfecção
17.
Gastroenterology ; 151(6): 1192-1205, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27614046

RESUMO

BACKGROUND & AIMS: Effective treatments are urgently needed for hepatocellular carcinoma (HCC), which is usually diagnosed at advanced stages. Signaling via the insulin-like growth factor (IGF) pathway is aberrantly activated in HCC by IGF2 overexpression. We aimed to elucidate the mechanism of IGF2 overexpression and its oncogenic activities and evaluate the anti-tumor effects of reducing IGF2 signaling. METHODS: We obtained 228 HCC samples from patients who underwent liver resection, 168 paired non-tumor adjacent cirrhotic liver samples, and 10 non-tumor liver tissues from patients undergoing resection for hepatic hemangioma. We analyzed gene expression, microRNA, and DNA methylation profiles for all samples, focusing on genes in the IGF signaling pathway. IGF2 was expressed in SNU449 and PLC5 HCC cells and knocked down with small hairpin RNAs in Hep3B and Huh7 cell lines. We analyzed these cells for proliferation, apoptosis, migration, and colony formation. We performed studies in mice engineered to express Myc and Akt1 in liver, which develop liver tumors, with or without hepatic expression of Igf2. Mice with xenograft tumors grown from HCC cells were given a monoclonal antibody against IGF1 and IGF2 (xentuzumab), along with sorafenib; tumor growth was measured and tissues were analyzed by immunohistochemistry and immunoblots. RESULTS: Levels of IGF2 messenger RNA and protein were increased >20-fold in 15% of human HCC tissues compared with non-tumor liver tissues. Methylation at the fetal promoters of IGF2 was reduced in the HCC samples and cell lines that overexpressed IGF2, compared with those that did not overexpress this gene, and non-tumor tissues. Tumors that overexpressed IGF2 had gene expression patterns significantly associated with hepatic progenitor cell features, stellate cell activation, NOTCH signaling, and an aggressive phenotype (P < .0001). In mice engineered to express Myc and Akt1 in liver, co-expression of Igf2 accelerated formation of liver tumors, compared to mice with livers expressing only Myc and Akt1, and shortened survival times (P = .02). The antibody xentuzumab blocked phosphorylation of IGF1 receptor in HCC cell lines and reduced their proliferation and colony formation. In mice with xenograft tumors, injection of xentuzumab, with or without sorafenib, slowed tumor growth and increased survival times compared to vehicle or sorafenib alone. Xentuzumab inhibited phosphorylation of IGF1 receptor and AKT and reduced decreased tumor vascularization compared with vehicle. CONCLUSIONS: A large proportion of HCC samples were found to overexpress IGF2, via demethylation of its fetal promoter. Overexpression of IGF2 accelerates formation of liver tumors in mice with hepatic expression of MYC and AKT1, via activation of IGF1 receptor signaling. An antibody against IGF1 and IGF2 slows growth of xenograft tumors and increases survival of these mice.


Assuntos
Anticorpos Neutralizantes/farmacologia , Carcinoma Hepatocelular/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Hepáticas/genética , RNA Mensageiro/metabolismo , Animais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Metilação de DNA , Epigênese Genética , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neovascularização Patológica/tratamento farmacológico , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Compostos de Fenilureia/uso terapêutico , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transdução de Sinais/genética , Sorafenibe , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
19.
Nat Med ; 22(7): 744-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27213815

RESUMO

MYC oncoproteins are involved in the genesis and maintenance of the majority of human tumors but are considered undruggable. By using a direct in vivo shRNA screen, we show that liver cancer cells that have mutations in the gene encoding the tumor suppressor protein p53 (Trp53 in mice and TP53 in humans) and that are driven by the oncoprotein NRAS become addicted to MYC stabilization via a mechanism mediated by aurora kinase A (AURKA). This MYC stabilization enables the tumor cells to overcome a latent G2/M cell cycle arrest that is mediated by AURKA and the tumor suppressor protein p19(ARF). MYC directly binds to AURKA, and inhibition of this protein-protein interaction by conformation-changing AURKA inhibitors results in subsequent MYC degradation and cell death. These conformation-changing AURKA inhibitors, with one of them currently being tested in early clinical trials, suppressed tumor growth and prolonged survival in mice bearing Trp53-deficient, NRAS-driven MYC-expressing hepatocellular carcinomas (HCCs). TP53-mutated human HCCs revealed increased AURKA expression and a positive correlation between AURKA and MYC expression. In xenograft models, mice bearing TP53-mutated or TP53-deleted human HCCs were hypersensitive to treatment with conformation-changing AURKA inhibitors, thus suggesting a therapeutic strategy for this subgroup of human HCCs.


Assuntos
Aurora Quinase A/metabolismo , Carcinoma Hepatocelular/genética , Hepatócitos/metabolismo , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Deleção de Genes , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Mutação , Proteína Oncogênica p21(ras)/metabolismo , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Med ; 20(10): 1138-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25216638

RESUMO

In solid tumors, resistance to therapy inevitably develops upon treatment with cytotoxic drugs or molecularly targeted therapies. Here, we describe a system that enables pooled shRNA screening directly in mouse hepatocellular carcinomas (HCC) in vivo to identify genes likely to be involved in therapy resistance. Using a focused shRNA library targeting genes located within focal genomic amplifications of human HCC, we screened for genes whose inhibition increased the therapeutic efficacy of the multikinase inhibitor sorafenib. Both shRNA-mediated and pharmacological silencing of Mapk14 (p38α) were found to sensitize mouse HCC to sorafenib therapy and prolong survival by abrogating Mapk14-dependent activation of Mek-Erk and Atf2 signaling. Elevated Mapk14-Atf2 signaling predicted poor response to sorafenib therapy in human HCC, and sorafenib resistance of p-Mapk14-expressing HCC cells could be reverted by silencing Mapk14. Our results suggest that a combination of sorafenib and Mapk14 blockade is a promising approach to overcoming therapy resistance of human HCC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/genética , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Fator 2 Ativador da Transcrição/metabolismo , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Niacinamida/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais , Sorafenibe , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA