Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 167(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513348

RESUMO

In brief: Dairy cattle experience a period of infertility postpartum that is caused in part by the development of IGF1/insulin resistance. This study suggests that an adipokine, FNDC3A, reduces IGF1-dependent glycolysis and may contribute to postpartum infertility. Abstract: Dairy cows go through a period of subfertility after parturition, triggered in part by a disruption of energy homeostasis. The mobilization of body fat alters the secretion of adipokines, which have been shown to impact ovarian function. Fibronectin type III domain-containing 3A (FNDC3A) is a recently discovered adipokine-myokine, and FNDC3A mRNA abundance in subcutaneous adipose tissue is increased postpartum in cattle. In this study, we hypothesized that FNDC3A may compromise granulosa cell function in cattle and investigated this using a well-established in vitro cell culture model. Here, we demonstrate the presence of FNDC3A protein associated with extracellular vesicles in follicular fluid and in plasma, suggesting an endocrine role for this adipokine. FNDC3A protein and mRNA was also detected in the bovine ovary (cortex, granulosa and theca cells, cumulus, oocyte and corpus luteum). Abundance of FNDC3A mRNA in granulosa cells from small follicles was increased by in vitro treatment with the adipokines leptin and TNF but not by visfatin, resistin, adiponectin, chemerin or IGF1. Addition of recombinant FNDC3A at physiological doses (10 ng/mL) to granulosa cells decreased IGF1-dependent progesterone but not estradiol secretion and IGF1-dependent lactate secretion and abundance of GLUT3 and GLUT4 mRNA. This concentration of FNDC3A increased cell viability, abundance of mRNA encoding a putative receptor FOLR1, and increased phosphorylation of Akt. Collectively, these data suggest that FNDC3A may regulate folliculogenesis in cattle by modulating IGF1-dependent granulosa cell steroidogenesis and glucose metabolism.


Assuntos
Células da Granulosa , Infertilidade , Animais , Bovinos , Feminino , Adipocinas/metabolismo , Células da Granulosa/metabolismo , Infertilidade/metabolismo , Lactatos/metabolismo , Progesterona/metabolismo , RNA Mensageiro/metabolismo , Receptor 1 de Folato/metabolismo , Fibronectinas/metabolismo , Exossomos/genética , Exossomos/metabolismo
2.
Reproduction ; 165(5): 533-542, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795655

RESUMO

In brief: Fertility in the dairy cow is low during the post-partum period of negative energy balance and high plasma irisin concentrations. This study shows irisin modulates granulosa cell glucose metabolism and impairs steroidogenesis. Abstract: Fibronectin type III domain-containing 5 (FNDC5) is a transmembrane protein discovered in 2012 that is cleaved to release the adipokine-myokine, irisin. Originally described as an exercise hormone that browns white adipose tissue and increases glucose metabolism, irisin secretion also increases during periods of rapid adipose mobilization, such as the post-partum period in dairy cattle when ovarian activity is suppressed. The effect of irisin on follicle function is unclear and may be species-dependent. In this study, we hypothesized that irisin may compromise granulosa cell function in cattle using a well-established in vitro cell culture model. We detected FNDC5 mRNA and both FNDC5 and cleaved irisin proteins in follicle tissue and in follicular fluid. The abundance of FNDC5 mRNA was increased by the treatment of cells with the adipokine visfatin but not by other adipokines tested. The addition of recombinant irisin to granulosa cells decreased basal and insulin-like growth factor 1- and follicle-stimulating hormone-dependent estradiol and progesterone secretion and increased cell proliferation but had no effect on viability. Irisin decreased GLUT1, GLUT3, and GLUT4 mRNA levels in granulosa cells and increased lactate release in the culture medium. The mechanism of action is in part through MAPK3/1 but not Akt, MAPK14, or PRKAA. We conclude that irisin may regulate bovine folliculogenesis by modulating granulosa cell steroidogenesis and glucose metabolism.


Assuntos
Fibronectinas , Células da Granulosa , Feminino , Bovinos , Animais , Fibronectinas/metabolismo , Células da Granulosa/metabolismo , RNA Mensageiro/metabolismo , Adipocinas/metabolismo , Glucose/metabolismo
3.
Front Vet Sci ; 9: 960778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968020

RESUMO

The peripartum period in dairy cows is frequently associated with excessive lipolysis due to Negative Energy Balance (NEB). These metabolic disorders are the cause of various pathologies. Some metabolites such as ß-hydroxybutyrate (BHBA) and Non-Esterified Fatty Acids (NEFA) are known to be biomarkers of NEB in dairy cows. The involvement of adipokines, including adiponectin and leptin, during fat mobilization in the peripartum period is well described, but little is known about the impact of myokines at this time. Fibronectin type III domain-containing proteins (FNDC) are myokines and adipokines recently discovered to play a role in metabolic dysfunctions. This study aimed to evaluate some FNDCs (FNDC5, 4, 3A and B) as potential plasma and adipose tissue indicators of NEB in cattle. We measured plasma FNDC concentrations and adipose tissue FNDC gene expression during the peripartum period, 4 weeks before the estimated calving day (4WAP), one (1WPP) and 16 (16WPP) weeks postpartum in two groups of dairy cows with low NEB (LNEB, n = 8) and high NEB (HNEB, n = 13) at 1WPP. Using specific bovine ELISAs, only plasma FNDC5 concentrations varied during the peripartum period in both LNEB and HNEB animals; concentrations were higher at 1WPP as compared to 4WAP and 16 WPP. FNDC5 plasma concentrations was negatively correlated with dry matter intake, live body weight, variation of empty body weight and glucose concentrations, and positively correlated with plasma non-esterified fatty acids and BHBA concentrations. Subcutaneous adipose tissue contained abundant FNDC5 mRNA and protein, as measured by RT-qPCR and immunoblotting, respectively. We also observed that FNDC5 mRNA abundance in subcutaneous adipose tissue was higher at 1 WPP as compared to 4WAP and 16WPP in HNEB cows and higher at 1 WPP as compared to 4 WAP in LNEB cows, and was higher in HNEB than in LNEB animals during early lactation. Finally, we showed that recombinant human irisin (a fragmented product of FNDC5) increased the release of glycerol and abundance of mRNA encoding adipose triglyceride lipase and hormone-sensitive-lipase in bovine and human adipose tissue explants. In conclusion, FNDC5 is expressed in bovine adipose tissue and may be involved in lipid mobilization and regulation of NEB in cattle.

4.
Reproduction ; 164(1): R1-R9, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35521900

RESUMO

Dietary stress such as obesity and short-term changes in energy balance can disrupt ovarian function leading to infertility. Adipose tissue secretes hormones (adipokines), such as leptin and adiponectin, that are known to alter ovarian function. Muscles can also secrete endocrine factors, and one such family of myokines, the eleven Fibronectin type III domain-containing (FNDC) proteins, is emerging as important for energy sensing and homeostasis. In this review, we summarize the known roles the FNDC proteins play in energy homeostasis and explore potential impacts on fertility in females. The most well-known member, FNDC5, is the precursor of the 'exercise hormone', irisin, secreted by both muscle and adipose tissue. The receptors for irisin are integrins, and it has recently been shown to alter steroidogenesis in ovarian granulosa cells although the effects appear to be species or context specific, and irisin may improve uterine and placental function in women and rodent models. Another member, FNDC4, is also cleaved to release a bioactive protein that modulates insulin sensitivity in peripheral tissues and whose receptor, ADGRF5, is expressed in the ovary. As obese women and farm animals in negative energy balance (NEB) both have altered insulin sensitivity, secreted FNDC4 may impact ovarian function. We propose a model in which NEB or dietary imbalance alters plasma irisin and secreted FNDC4 concentrations, which then act on the ovary through their cognate receptors to reduce granulosa cell proliferation and follicle health. Research into these molecules will increase our understanding of energy sensing and fertility and may lead to new approaches to alleviate post-partum infertility. In Brief: Hormones secreted by muscle cells (myokines) are involved in the adaptive response to nutritional and metabolic changes. In this review, we discuss how one family of myokines may alter fertility in response to sudden changes in energy balance.


Assuntos
Infertilidade , Resistência à Insulina , Adipocinas/metabolismo , Animais , Feminino , Domínio de Fibronectina Tipo III , Fibronectinas/metabolismo , Humanos , Obesidade/metabolismo , Placenta/metabolismo , Gravidez , Proteínas , Reprodução
5.
Cells ; 11(6)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35326408

RESUMO

The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.


Assuntos
Células Lúteas , Neuropeptídeos , Adipocinas/metabolismo , Animais , Corpo Lúteo/fisiologia , Feminino , Humanos , Células Lúteas/metabolismo , Luteólise/fisiologia , Neuropeptídeos/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA