Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microlife ; 5: uqad048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234448

RESUMO

Archaeal viruses display a high degree of structural and genomic diversity. Few details are known about the mechanisms by which these viruses enter and exit their host cells. Research on archaeal viruses has lately made significant progress due to advances in genetic tools and imaging techniques, such as cryo-electron tomography (cryo-ET). In recent years, a steady output of newly identified archaeal viral receptors and egress mechanisms has offered the first insight into how archaeal viruses interact with the archaeal cell envelope. As more details about archaeal viral entry and egress are unravelled, patterns are starting to emerge. This helps to better understand the interactions between viruses and the archaeal cell envelope and how these compare to infection strategies of viruses in other domains of life. Here, we provide an overview of recent developments in the field of archaeal viral entry and egress, shedding light onto the most elusive part of the virosphere.

2.
Biochem J ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164968

RESUMO

Mitochondrial ATP synthases form rows of dimers, which induce membrane curvature to give cristae their characteristic lamellar or tubular morphology. The angle formed between the central stalks of ATP synthase dimers varies between species. Using cryo-electron tomography and sub-tomogram averaging, we determined the structure of the ATP synthase dimer from the nematode worm C. elegans and show that the dimer angle differs from previously determined structures. The consequences of this species-specific difference at the dimer interface were investigated by comparing C. elegans and S. cerevisiae mitochondrial morphology. We reveal that C. elegans has a larger ATP synthase dimer angle with more lamellar (flatter) cristae when compared to yeast. The underlying cause of this difference was investigated by generating an atomic model of the C. elegans ATP synthase dimer by homology modelling. A comparison of our C. elegans model to an existing S. cerevisiae structure reveals the presence of extensions and rearrangements in C. elegans subunits associated with maintaining the dimer interface. We speculate that increasing dimer angles could provide an advantage for species that inhabit variable-oxygen environments by forming flatter more energetically efficient cristae.

3.
Elife ; 132024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251732

RESUMO

Surface layers (S-layers) are resilient two-dimensional protein lattices that encapsulate many bacteria and most archaea. In archaea, S-layers usually form the only structural component of the cell wall and thus act as the final frontier between the cell and its environment. Therefore, S-layers are crucial for supporting microbial life. Notwithstanding their importance, little is known about archaeal S-layers at the atomic level. Here, we combined single-particle cryo electron microscopy, cryo electron tomography, and Alphafold2 predictions to generate an atomic model of the two-component S-layer of Sulfolobus acidocaldarius. The outer component of this S-layer (SlaA) is a flexible, highly glycosylated, and stable protein. Together with the inner and membrane-bound component (SlaB), they assemble into a porous and interwoven lattice. We hypothesise that jackknife-like conformational changes in SlaA play important roles in S-layer assembly.


Assuntos
Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/metabolismo , Archaea , Bactérias , Parede Celular
4.
Nat Microbiol ; 8(10): 1834-1845, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709902

RESUMO

Translational control is an essential process for the cell to adapt to varying physiological or environmental conditions. To survive adverse conditions such as low nutrient levels, translation can be shut down almost entirely by inhibiting ribosomal function. Here we investigated eukaryotic hibernating ribosomes from the microsporidian parasite Spraguea lophii in situ by a combination of electron cryo-tomography and single-particle electron cryo-microscopy. We show that microsporidian spores contain hibernating ribosomes that are locked in a dimeric (100S) state, which is formed by a unique dimerization mechanism involving the beak region. The ribosomes within the dimer are fully assembled, suggesting that they are ready to be activated once the host cell is invaded. This study provides structural evidence for dimerization acting as a mechanism for ribosomal hibernation in microsporidia, and therefore demonstrates that eukaryotes utilize this mechanism in translational control.


Assuntos
Microsporídios , Animais , Microscopia Crioeletrônica , Esporos , Dimerização , Eucariotos , Ribossomos
5.
Nat Commun ; 14(1): 2724, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169795

RESUMO

Phages are viruses that infect bacteria and dominate every ecosystem on our planet. As well as impacting microbial ecology, physiology and evolution, phages are exploited as tools in molecular biology and biotechnology. This is particularly true for the Ff (f1, fd or M13) phages, which represent a widely distributed group of filamentous viruses. Over nearly five decades, Ffs have seen an extraordinary range of applications, yet the complete structure of the phage capsid and consequently the mechanisms of infection and assembly remain largely mysterious. In this work, we use cryo-electron microscopy and a highly efficient system for production of short Ff-derived nanorods to determine a structure of a filamentous virus including the tips. We show that structure combined with mutagenesis can identify phage domains that are important in bacterial attack and for release of new progeny, allowing new models to be proposed for the phage lifecycle.


Assuntos
Bacteriófagos , Inovirus , Viroses , Humanos , Microscopia Crioeletrônica , Ecossistema , Bacteriófagos/genética , Inovirus/genética , Bactérias
6.
Biochem J ; 480(4): 283-296, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701201

RESUMO

Gram-negative bacteria are surrounded by two protein-rich membranes with a peptidoglycan layer sandwiched between them. Together they form the envelope (or cell wall), crucial for energy production, lipid biosynthesis, structural integrity, and for protection against physical and chemical environmental challenges. To achieve envelope biogenesis, periplasmic and outer-membrane proteins (OMPs) must be transported from the cytosol and through the inner-membrane, via the ubiquitous SecYEG protein-channel. Emergent proteins either fold in the periplasm or cross the peptidoglycan (PG) layer towards the outer-membrane for insertion through the ß-barrel assembly machinery (BAM). Trafficking of hydrophobic proteins through the periplasm is particularly treacherous given the high protein density and the absence of energy (ATP or chemiosmotic potential). Numerous molecular chaperones assist in the prevention and recovery from aggregation, and of these SurA is known to interact with BAM, facilitating delivery to the outer-membrane. However, it is unclear how proteins emerging from the Sec-machinery are received and protected from aggregation and proteolysis prior to an interaction with SurA. Through biochemical analysis and electron microscopy we demonstrate the binding capabilities of the unoccupied and substrate-engaged SurA to the inner-membrane translocation machinery complex of SecYEG-SecDF-YidC - aka the holo-translocon (HTL). Supported by AlphaFold predictions, we suggest a role for periplasmic domains of SecDF in chaperone recruitment to the protein translocation exit site in SecYEG. We propose that this immediate interaction with the enlisted chaperone helps to prevent aggregation and degradation of nascent envelope proteins, facilitating their safe passage to the periplasm and outer-membrane.


Assuntos
Proteínas de Escherichia coli , Periplasma , Periplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte/metabolismo , Peptidilprolil Isomerase/metabolismo
7.
Nat Commun ; 13(1): 7411, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456543

RESUMO

Pili are filamentous surface extensions that play roles in bacterial and archaeal cellular processes such as adhesion, biofilm formation, motility, cell-cell communication, DNA uptake and horizontal gene transfer. The model archaeaon Sulfolobus acidocaldarius assembles three filaments of the type-IV pilus superfamily (archaella, archaeal adhesion pili and UV-inducible pili), as well as a so-far uncharacterised fourth filament, named "thread". Here, we report on the cryo-EM structure of the archaeal thread. The filament is highly glycosylated and consists of subunits of the protein Saci_0406, arranged in a head-to-tail manner. Saci_0406 displays structural similarity, but low sequence homology, to bacterial type-I pilins. Thread subunits are interconnected via donor strand complementation, a feature reminiscent of bacterial chaperone-usher pili. However, despite these similarities in overall architecture, archaeal threads appear to have evolved independently and are likely assembled by a distinct mechanism.


Assuntos
Archaea , Elétrons , Microscopia Crioeletrônica , Citoesqueleto , Software
11.
Faraday Discuss ; 240(0): 303-311, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35929538

RESUMO

Helical reconstruction is the method of choice for obtaining 3D structures of filaments from electron cryo-microscopy (cryoEM) projections. This approach relies on applying helical symmetry parameters deduced from Fourier-Bessel or real space analysis, such as sub-tomogram averaging. While helical reconstruction continues to provide invaluable structural insights into filaments, its inherent dependence on imposing a pre-defined helical symmetry can also introduce bias. The applied helical symmetry produces structures that are infinitely straight along the filament's axis and can average out biologically important heterogeneities. Here, we describe a simple workflow aimed at overcoming these drawbacks in order to provide truer representations of filamentous structures.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos
12.
Front Microbiol ; 13: 848597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387068

RESUMO

Motile archaea swim by means of a molecular machine called the archaellum. This structure consists of a filament attached to a membrane-embedded motor. The archaellum is found exclusively in members of the archaeal domain, but the core of its motor shares homology with the motor of type IV pili (T4P). Here, we provide an overview of the different components of the archaellum machinery and hypothetical models to explain how rotary motion of the filament is powered by the archaellum motor.

13.
Nat Commun ; 13(1): 710, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132062

RESUMO

Archaea use a molecular machine, called the archaellum, to swim. The archaellum consists of an ATP-powered intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. In many species, several archaellin homologs are encoded in the same operon; however, previous structural studies indicated that archaellum filaments mainly consist of only one protein species. Here, we use electron cryo-microscopy to elucidate the structure of the archaellum from Methanocaldococcus villosus at 3.08 Å resolution. The filament is composed of two alternating archaellins, suggesting that the architecture and assembly of archaella is more complex than previously thought. Moreover, we identify structural elements that may contribute to the filament's flexibility.


Assuntos
Flagelos/química , Methanocaldococcus/química , Proteínas Arqueais/química , Sítios de Ligação , Microscopia Crioeletrônica , Flagelos/fisiologia , Flagelina/química , Glicosilação , Metais/química , Methanocaldococcus/fisiologia , Modelos Moleculares , Multimerização Proteica , Subunidades Proteicas
14.
Front Microbiol ; 12: 766527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925275

RESUMO

Methylomirabilis bacteria perform anaerobic methane oxidation coupled to nitrite reduction via an intra-aerobic pathway, producing carbon dioxide and dinitrogen gas. These diderm bacteria possess an unusual polygonal cell shape with sharp ridges that run along the cell body. Previously, a putative surface protein layer (S-layer) was observed as the outermost cell layer of these bacteria. We hypothesized that this S-layer is the determining factor for their polygonal cell shape. Therefore, we enriched the S-layer from M. lanthanidiphila cells and through LC-MS/MS identified a 31 kDa candidate S-layer protein, mela_00855, which had no homology to any other known protein. Antibodies were generated against a synthesized peptide derived from the mela_00855 protein sequence and used in immunogold localization to verify its identity and location. Both on thin sections of M. lanthanidiphila cells and in negative-stained enriched S-layer patches, the immunogold localization identified mela_00855 as the S-layer protein. Using electron cryo-tomography and sub-tomogram averaging of S-layer patches, we observed that the S-layer has a hexagonal symmetry. Cryo-tomography of whole cells showed that the S-layer and the outer membrane, but not the peptidoglycan layer and the cytoplasmic membrane, exhibited the polygonal shape. Moreover, the S-layer consisted of multiple rigid sheets that partially overlapped, most likely giving rise to the unique polygonal cell shape. These characteristics make the S-layer of M. lanthanidiphila a distinctive and intriguing case to study.

15.
Nat Commun ; 12(1): 6316, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728631

RESUMO

The Ff family of filamentous bacteriophages infect gram-negative bacteria, but do not cause lysis of their host cell. Instead, new virions are extruded via the phage-encoded pIV protein, which has homology with bacterial secretins. Here, we determine the structure of pIV from the f1 filamentous bacteriophage at 2.7 Å resolution by cryo-electron microscopy, the first near-atomic structure of a phage secretin. Fifteen f1 pIV subunits assemble to form a gated channel in the bacterial outer membrane, with associated soluble domains projecting into the periplasm. We model channel opening and propose a mechanism for phage egress. By single-cell microfluidics experiments, we demonstrate the potential for secretins such as pIV to be used as adjuvants to increase the uptake and efficacy of antibiotics in bacteria. Finally, we compare the f1 pIV structure to its homologues to reveal similarities and differences between phage and bacterial secretins.


Assuntos
Microscopia Crioeletrônica/métodos , Inovirus/metabolismo , Secretina/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Transporte Biológico , Elementos Estruturais de Proteínas , Alinhamento de Sequência , Proteínas não Estruturais Virais/metabolismo
16.
Elife ; 92020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146611

RESUMO

The outer-membrane of Gram-negative bacteria is critical for surface adhesion, pathogenicity, antibiotic resistance and survival. The major constituent - hydrophobic ß-barrel Outer-Membrane Proteins (OMPs) - are first secreted across the inner-membrane through the Sec-translocon for delivery to periplasmic chaperones, for example SurA, which prevent aggregation. OMPs are then offloaded to the ß-Barrel Assembly Machinery (BAM) in the outer-membrane for insertion and folding. We show the Holo-TransLocon (HTL) - an assembly of the protein-channel core-complex SecYEG, the ancillary sub-complex SecDF, and the membrane 'insertase' YidC - contacts BAM through periplasmic domains of SecDF and YidC, ensuring efficient OMP maturation. Furthermore, the proton-motive force (PMF) across the inner-membrane acts at distinct stages of protein secretion: (1) SecA-driven translocation through SecYEG and (2) communication of conformational changes via SecDF across the periplasm to BAM. The latter presumably drives efficient passage of OMPs. These interactions provide insights of inter-membrane organisation and communication, the importance of which is becoming increasingly apparent.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas da Membrana Bacteriana Externa/genética , Sistemas de Secreção Bacterianos/genética , Modelos Moleculares , Conformação Proteica , Transporte Proteico
17.
Nat Commun ; 11(1): 2231, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376942

RESUMO

Type IV pili are flexible filaments on the surface of bacteria, consisting of a helical assembly of pilin proteins. They are involved in bacterial motility (twitching), surface adhesion, biofilm formation and DNA uptake (natural transformation). Here, we use cryo-electron microscopy and mass spectrometry to show that the bacterium Thermus thermophilus produces two forms of type IV pilus ('wide' and 'narrow'), differing in structure and protein composition. Wide pili are composed of the major pilin PilA4, while narrow pili are composed of a so-far uncharacterized pilin which we name PilA5. Functional experiments indicate that PilA4 is required for natural transformation, while PilA5 is important for twitching motility.


Assuntos
Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Thermus thermophilus/ultraestrutura , Microscopia Crioeletrônica , DNA/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Espectrometria de Massas , Modelos Moleculares , Estrutura Secundária de Proteína , Thermus thermophilus/química , Thermus thermophilus/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(50): 25278-25286, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767763

RESUMO

Surface protein layers (S-layers) often form the only structural component of the archaeal cell wall and are therefore important for cell survival. S-layers have a plethora of cellular functions including maintenance of cell shape, osmotic, and mechanical stability, the formation of a semipermeable protective barrier around the cell, and cell-cell interaction, as well as surface adhesion. Despite the central importance of S-layers for archaeal life, their 3-dimensional (3D) architecture is still poorly understood. Here we present detailed 3D electron cryomicroscopy maps of archaeal S-layers from 3 different Sulfolobus strains. We were able to pinpoint the positions and determine the structure of the 2 subunits SlaA and SlaB. We also present a model describing the assembly of the mature S-layer.


Assuntos
Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Sulfolobus/metabolismo , Microscopia Crioeletrônica , Dimerização , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Sulfolobus/química , Sulfolobus/genética , Sulfolobus/ultraestrutura
19.
Biol Chem ; 399(7): 799-808, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29894297

RESUMO

Bacteria and archaea are evolutionarily distinct prokaryotes that diverged from a common ancestor billions of years ago. However, both bacteria and archaea assemble long, helical protein filaments on their surface through a machinery that is conserved at its core. In both domains of life, the filaments are required for a diverse array of important cellular processes including cell motility, adhesion, communication and biofilm formation. In this review, we highlight the recent structures of both the type IV pilus machinery and the archaellum determined in situ. We describe the current level of functional understanding and discuss how this relates to the pressures facing bacteria and archaea throughout evolution.


Assuntos
Fímbrias Bacterianas/metabolismo , Organelas/metabolismo , Células Procarióticas/metabolismo , Archaea/citologia , Archaea/metabolismo , Bactérias/citologia , Bactérias/metabolismo
20.
Biophys Rev ; 10(2): 551-557, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29204884

RESUMO

Viruses have developed intricate molecular machines to infect, replicate within and escape from their host cells. Perhaps one of the most intriguing of these mechanisms is the pyramidal egress structure that has evolved in archaeal viruses, such as SIRV2 or STIV1. The structure and mechanism of these virus-associated pyramids (VAPs) has been studied by cryo-electron tomography and complementary biochemical techniques, revealing that VAPs are formed by multiple copies of a virus-encoded 10-kDa protein (PVAP) that integrate into the cell membrane and assemble into hollow, sevenfold symmetric pyramids. In this process, growing VAPs puncture the protective surface layer and ultimately open to release newly replicated viral particles into the surrounding medium. PVAP has the striking capability to spontaneously integrate and self-assemble into VAPs in biological membranes of the archaea, bacteria and eukaryotes. This renders the VAP a universal membrane remodelling system. In this review, we provide an overview of the VAP structure and assembly mechanism and discuss the possible use of VAPs in nano-biotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA