Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7456, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978174

RESUMO

The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.


Assuntos
Archaea , Bactérias , Filogenia , Bactérias/genética , Archaea/genética , Mitocôndrias/genética , Trifosfato de Adenosina , Evolução Molecular , Eucariotos/genética , Evolução Biológica
2.
Genome Biol Evol ; 15(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37463417

RESUMO

ALE and GeneRax are tools for probabilistic gene tree-species tree reconciliation. Based on a common underlying statistical model of how gene trees evolve along species trees, these methods rely on gene vs. species tree discordance to infer gene duplication, transfer, and loss events, map gene family origins, and root species trees. Published analyses have used these methods to root species trees of Archaea, Bacteria, and several eukaryotic groups, as well as to infer ancestral gene repertoires. However, it was recently suggested that reconciliation-based estimates of duplication and transfer events using the ALE/GeneRax model were unreliable, with potential implications for species tree rooting. Here, we assess these criticisms and find that the methods are accurate when applied to simulated data and in generally good agreement with alternative methodological approaches on empirical data. In particular, ALE recovers variation in gene duplication and transfer frequencies across lineages that is consistent with the known biology of studied clades. In plants and opisthokonts, ALE recovers the consensus species tree root; in Bacteria-where there is less certainty about the root position-ALE agrees with alternative approaches on the most likely root region. Overall, ALE and related approaches are promising tools for studying genome evolution.


Assuntos
Algoritmos , Evolução Molecular , Filogenia , Duplicação Gênica , Bactérias/genética , Eucariotos , Modelos Genéticos
3.
Methods Mol Biol ; 2569: 75-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36083444

RESUMO

Many organisms are able to incorporate exogenous DNA into their genomes. This process, called lateral gene transfer (LGT), has the potential to benefit the recipient organism by providing useful coding sequences, such as antibiotic resistance genes or enzymes which expand the organism's metabolic niche. For evolutionary biologists, LGTs have often been considered a nuisance because they complicate the reconstruction of the underlying species tree that many analyses aim to recover. However, LGT events between distinct organisms harbor information on the relative divergence time of the donor and recipient lineages. As a result transfers provide a novel and as yet mostly unexplored source of information to determine the order of divergence of clades, with the potential for absolute dating if linked to the fossil record.


Assuntos
Evolução Biológica , Transferência Genética Horizontal , Evolução Molecular , Genoma , Filogenia
4.
Methods Mol Biol ; 2569: 189-211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36083449

RESUMO

Interpreting phylogenetic trees requires a root, which provides the direction of evolution and polarizes ancestor-descendant relationships. But inferring the root using genetic data is difficult, particularly in cases where the closest available outgroup is only distantly related, which are common for microbes. In this chapter, we present a workflow for estimating rooted species trees and the evolutionary history of the gene families that evolve within them using probabilistic gene tree-species tree reconciliation. We illustrate the pipeline using a small dataset of prokaryotic genomes, for which the example scripts can be run using modest computer resources. We describe the rooting method used in this work in the context or other rooting strategies and discuss some of the limitations and opportunities presented by probabilistic gene tree-species tree reconciliation methods.


Assuntos
Algoritmos , Genoma , Evolução Molecular , Modelos Genéticos , Filogenia , Células Procarióticas
5.
Nat Microbiol ; 6(7): 946-959, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155373

RESUMO

The accrual of genomic data from both cultured and uncultured microorganisms provides new opportunities to develop systematic taxonomies based on evolutionary relationships. Previously, we established a bacterial taxonomy through the Genome Taxonomy Database. Here, we propose a standardized archaeal taxonomy that is derived from a 122-concatenated-protein phylogeny that resolves polyphyletic groups and normalizes ranks based on relative evolutionary divergence. The resulting archaeal taxonomy, which forms part of the Genome Taxonomy Database, is stable for a range of phylogenetic variables including marker gene selection, inference methods, corrections for rate heterogeneity and compositional bias, tree rooting scenarios and expansion of the genome database. Rank normalization is shown to robustly correct for substitution rates varying up to 30-fold using simulated datasets. Taxonomic curation follows the rules of the International Code of Nomenclature of Prokaryotes while taking into account proposals to formally recognize the rank of phylum and to use genome sequences as type material. This taxonomy is based on 2,392 archaeal genomes, 93.3% of which required one or more changes to their existing taxonomy, mainly owing to incomplete classification. We identify 16 archaeal phyla and reclassify 3 major monophyletic units from the former Euryarchaeota and one phylum that unites the Thaumarchaeota-Aigarchaeota-Crenarchaeota-Korarchaeota (TACK) superphylum into a single phylum.


Assuntos
Archaea/classificação , Bases de Dados Genéticas , Genoma Arqueal , Archaea/genética , Bases de Dados Genéticas/normas , Evolução Molecular , Genômica , Filogenia , Padrões de Referência
6.
Science ; 372(6542)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958449

RESUMO

A rooted bacterial tree is necessary to understand early evolution, but the position of the root is contested. Here, we model the evolution of 11,272 gene families to identify the root, extent of horizontal gene transfer (HGT), and the nature of the last bacterial common ancestor (LBCA). Our analyses root the tree between the major clades Terrabacteria and Gracilicutes and suggest that LBCA was a free-living flagellated, rod-shaped double-membraned organism. Contrary to recent proposals, our analyses reject a basal placement of the Candidate Phyla Radiation, which instead branches sister to Chloroflexota within Terrabacteria. While most gene families (92%) have evidence of HGT, overall, two-thirds of gene transmissions have been vertical, suggesting that a rooted tree provides a meaningful frame of reference for interpreting bacterial evolution.


Assuntos
Bactérias/classificação , Bactérias/genética , Evolução Molecular , Filogenia , Archaea/classificação , Archaea/genética , Transferência Genética Horizontal , Genoma Bacteriano
7.
Bioinformatics ; 36(4): 1286-1288, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31566657

RESUMO

SUMMARY: Here we present Zombi, a tool to simulate the evolution of species, genomes and sequences in silico, that considers for the first time the evolution of genomes in extinct lineages. It also incorporates various features that have not to date been combined in a single simulator, such as the possibility of generating species trees with a pre-defined variation of speciation and extinction rates through time, simulating explicitly intergenic sequences of variable length and outputting gene tree-species tree reconciliations. AVAILABILITY AND IMPLEMENTATION: Source code and manual are freely available in https://github.com/AADavin/ZOMBI/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Simulação por Computador , DNA Intergênico , Filogenia
8.
Bioinformatics ; 34(21): 3646-3652, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29762653

RESUMO

Motivation: A reconciliation is an annotation of the nodes of a gene tree with evolutionary events-for example, speciation, gene duplication, transfer, loss, etc.-along with a mapping onto a species tree. Many algorithms and software produce or use reconciliations but often using different reconciliation formats, regarding the type of events considered or whether the species tree is dated or not. This complicates the comparison and communication between different programs. Results: Here, we gather a consortium of software developers in gene tree species tree reconciliation to propose and endorse a format that aims to promote an integrative-albeit flexible-specification of phylogenetic reconciliations. This format, named recPhyloXML, is accompanied by several tools such as a reconciled tree visualizer and conversion utilities. Availability and implementation: http://phylariane.univ-lyon1.fr/recphyloxml/.


Assuntos
Evolução Molecular , Duplicação Gênica , Algoritmos , Filogenia , Software
9.
Nat Ecol Evol ; 2(5): 904-909, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610471

RESUMO

Biodiversity has always been predominantly microbial, and the scarcity of fossils from bacteria, archaea and microbial eukaryotes has prevented a comprehensive dating of the tree of life. Here, we show that patterns of lateral gene transfer deduced from an analysis of modern genomes encode a novel and abundant source of information about the temporal coexistence of lineages throughout the history of life. We use state-of-the-art species tree-aware phylogenetic methods to reconstruct the history of thousands of gene families and demonstrate that dates implied by gene transfers are consistent with estimates from relaxed molecular clocks in Bacteria, Archaea and Eukarya. We present the order of speciations according to lateral gene transfer data calibrated to geological time for three datasets comprising 40 genomes for Cyanobacteria, 60 genomes for Archaea and 60 genomes for Fungi. An inspection of discrepancies between transfers and clocks and a comparison with mammalian fossils show that gene transfer in microbes is potentially as informative for dating the tree of life as the geological record in macroorganisms.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Genoma Arqueal , Genoma Bacteriano , Genoma Fúngico , Filogenia , Cianobactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA