Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(750): eadh0185, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838133

RESUMO

Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography-mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis.


Assuntos
Proteoma , Sepse , Humanos , Sepse/sangue , Proteoma/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteômica/métodos , Masculino , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Feminino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos
2.
Biosci Rep ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860875

RESUMO

High blood pressure in the portal vein, portal hypertension (PH), is the final common pathway in liver cirrhosis regardless of aetiology. Complications from PH are the major cause of morbidity and mortality in these patients. Current drug therapy to reduce portal pressure is mainly limited to ß-adrenergic receptor blockade but about forty percent of patients do not respond. Our aim was to use microarray to measure the expression of ~20,800 genes in portal vein from patients with PH undergoing transplantation for liver cirrhosis (PH, n = 12) versus healthy vessels (control, n = 9) to identify potential drug targets to improve therapy. Expression of 9,964 genes above background was detected in portal vein samples. Comparing PH veins versus control (adjusted p value < 0.05, fold change > 1.5) identified 548 upregulated genes and 1,996 downregulated genes. The 2,544 differentially expressed genes were subjected to pathway analysis. We identified 49 significantly enriched pathways. The endothelin pathway was ranked the tenth most significant, the only vasoconstrictive pathway to be identified. ET-1 gene (EDN1) was significantly upregulated, consistent with elevated levels of ET-1 peptide previously measured in PH and cirrhosis. ETA receptor gene (EDNRA) was significantly downregulated, consistent with an adaptive response to increased peptide levels in the portal vein but there was no change in the ETB gene (EDNRB). The results provide further support for evaluating the efficacy of ETA receptor antagonists as a potential therapy in addition to ß-blockers in patients with PH and cirrhosis.

3.
Cell Genom ; : 100587, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38897207

RESUMO

Sepsis is a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated response to infection, for which disease heterogeneity is a major obstacle to developing targeted treatments. We have previously identified gene-expression-based patient subgroups (sepsis response signatures [SRS]) informative for outcome and underlying pathophysiology. Here, we aimed to investigate the role of genetic variation in determining the host transcriptomic response and to delineate regulatory networks underlying SRS. Using genotyping and RNA-sequencing data on 638 adult sepsis patients, we report 16,049 independent expression (eQTLs) and 32 co-expression module (modQTLs) quantitative trait loci in this disease context. We identified significant interactions between SRS and genotype for 1,578 SNP-gene pairs and combined transcription factor (TF) binding site information (SNP2TFBS) and predicted regulon activity (DoRothEA) to identify candidate upstream regulators. Overall, these approaches identified putative mechanistic links between host genetic variation, cell subtypes, and the individual transcriptomic response to infection.

4.
Thorax ; 79(6): 515-523, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38471792

RESUMO

RATIONALE: Heterogeneity of the host response within sepsis, acute respiratory distress syndrome (ARDS) and more widely critical illness, limits discovery and targeting of immunomodulatory therapies. Clustering approaches using clinical and circulating biomarkers have defined hyper-inflammatory and hypo-inflammatory subphenotypes in ARDS associated with differential treatment response. It is unknown if similar subphenotypes exist in sepsis populations where leucocyte transcriptomic-defined subphenotypes have been reported. OBJECTIVES: We investigated whether inflammatory clusters based on cytokine protein abundance were seen in sepsis, and the relationships with previously described transcriptomic subphenotypes. METHODS: Hierarchical cluster and latent class analysis were applied to an observational study (UK Genomic Advances in Sepsis (GAinS)) (n=124 patients) and two clinical trial datasets (VANISH, n=155 and LeoPARDS, n=484) in which the plasma protein abundance of 65, 21, 11 circulating cytokines, cytokine receptors and regulators were quantified. Clinical features, outcomes, response to trial treatments and assignment to transcriptomic subphenotypes were compared between inflammatory clusters. MEASUREMENTS AND MAIN RESULTS: We identified two (UK GAinS, VANISH) or three (LeoPARDS) inflammatory clusters. A group with high levels of pro-inflammatory and anti-inflammatory cytokines was seen that was associated with worse organ dysfunction and survival. No interaction between inflammatory clusters and trial treatment response was found. We found variable overlap of inflammatory clusters and leucocyte transcriptomic subphenotypes. CONCLUSIONS: These findings demonstrate that differences in response at the level of cytokine biology show clustering related to severity, but not treatment response, and may provide complementary information to transcriptomic sepsis subphenotypes. TRIAL REGISTRATION NUMBER: ISRCTN20769191, ISRCTN12776039.


Assuntos
Citocinas , Fenótipo , Sepse , Transcriptoma , Humanos , Sepse/sangue , Sepse/genética , Masculino , Citocinas/sangue , Feminino , Pessoa de Meia-Idade , Leucócitos/metabolismo , Biomarcadores/sangue , Idoso , Análise por Conglomerados , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/tratamento farmacológico , Resultado do Tratamento
5.
Ann Surg ; 279(3): 510-520, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497667

RESUMO

OBJECTIVE: To describe immune pathways and gene networks altered following major abdominal surgery and to identify transcriptomic patterns associated with postoperative pneumonia. BACKGROUND: Nosocomial infections are a major healthcare challenge, developing in over 20% of patients aged 45 or over undergoing major abdominal surgery, with postoperative pneumonia associated with an almost 5-fold increase in 30-day mortality. METHODS: From a prospective consecutive cohort (n=150) undergoing major abdominal surgery, whole-blood RNA was collected preoperatively and at 3 time-points postoperatively (2-6, 24, and 48 h). Twelve patients diagnosed with postoperative pneumonia and 27 matched patients remaining infection-free were identified for analysis with RNA-sequencing. RESULTS: Compared to preoperative sampling, 3639 genes were upregulated and 5043 downregulated at 2 to 6 hours. Pathway analysis demonstrated innate-immune activation with neutrophil degranulation and Toll-like-receptor signaling upregulation alongside adaptive-immune suppression. Cell-type deconvolution of preoperative RNA-sequencing revealed elevated S100A8/9-high neutrophils alongside reduced naïve CD4 T-cells in those later developing pneumonia. Preoperatively, a gene-signature characteristic of neutrophil degranulation was associated with postoperative pneumonia acquisition ( P =0.00092). A previously reported Sepsis Response Signature (SRSq) score, reflecting neutrophil dysfunction and a more dysregulated host response, at 48 hours postoperatively, differed between patients subsequently developing pneumonia and those remaining infection-free ( P =0.045). Analysis of the novel neutrophil gene-signature and SRSq scores in independent major abdominal surgery and polytrauma cohorts indicated good predictive performance in identifying patients suffering later infection. CONCLUSIONS: Major abdominal surgery acutely upregulates innate-immune pathways while simultaneously suppressing adaptive-immune pathways. This is more prominent in patients developing postoperative pneumonia. Preoperative transcriptomic signatures characteristic of neutrophil degranulation and postoperative SRSq scores may be useful predictors of subsequent pneumonia risk.


Assuntos
Pneumonia , Humanos , Estudos Prospectivos , Pneumonia/diagnóstico , Transcriptoma , Perfilação da Expressão Gênica , RNA
6.
Wellcome Open Res ; 8: 347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928212

RESUMO

Background: Melioidosis is a frequently fatal disease caused by an environmental bacterium Burkholderia pseudomallei. The disease is prevalent in northeast Thailand, particularly among rice field farmers who are at risk of bacterial exposure through contact with contaminated soil and water. However, not all exposure results in disease, and infection can manifest diverse outcomes. We postulate that genetic factors, whether from the bacterium, the host or the combination of both, may influence disease outcomes. To address this hypothesis, we aim to collect, sequence, and analyse genetic data from melioidosis patients and controls, along with isolates of B. pseudomallei obtained from patients. Additionally, we will study the metagenomics of the household water supply for both patients and controls, including the presence of B. pseudomallei. Methods: BurkHostGEN is an ongoing observational study being conducted at Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand. We are obtaining consent from 600 melioidosis patients and 700 controls, spanning both sexes, to collect 1 mL of blood for host DNA analysis, 3 mL of blood for RNA analysis, as well as 5 L of household water supply for metagenomic analysis. Additionally, we are isolating B. pseudomallei from the melioidosis patients to obtain bacterial DNA. This comprehensive approach will allow us to identify B. pseudomallei and their paired host genetic factors associated with disease acquisition and severity. Ethical approvals have been obtained for BurkHostGEN. Host and bacterial genetic data will be uploaded to European Genome-Phenome Archive (EGA) and European Nucleotide Archive (ENA), respectively. Conclusions: BurkHostGEN holds the potential to discover bacterial and host genetic factors associated with melioidosis infection and severity of illness. It can also support various study designs, including biomarker validation, disease pathogenesis, and epidemiological analysis not only for melioidosis but also for other infectious diseases.

7.
Nat Immunol ; 24(5): 767-779, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095375

RESUMO

Sepsis arises from diverse and incompletely understood dysregulated host response processes following infection that leads to life-threatening organ dysfunction. Here we showed that neutrophils and emergency granulopoiesis drove a maladaptive response during sepsis. We generated a whole-blood single-cell multiomic atlas (272,993 cells, n = 39 individuals) of the sepsis immune response that identified populations of immunosuppressive mature and immature neutrophils. In co-culture, CD66b+ sepsis neutrophils inhibited proliferation and activation of CD4+ T cells. Single-cell multiomic mapping of circulating hematopoietic stem and progenitor cells (HSPCs) (29,366 cells, n = 27) indicated altered granulopoiesis in patients with sepsis. These features were enriched in a patient subset with poor outcome and a specific sepsis response signature that displayed higher frequencies of IL1R2+ immature neutrophils, epigenetic and transcriptomic signatures of emergency granulopoiesis in HSPCs and STAT3-mediated gene regulation across different infectious etiologies and syndromes. Our findings offer potential therapeutic targets and opportunities for stratified medicine in severe infection.


Assuntos
Neutrófilos , Sepse , Humanos , Hematopoese , Células-Tronco Hematopoéticas , Regulação da Expressão Gênica
8.
Nature ; 616(7955): 123-131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991119

RESUMO

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Assuntos
Doença da Artéria Coronariana , Multiômica , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Metabolômica/métodos , Fenótipo , Proteômica/métodos , Aprendizado de Máquina , Negro ou Afro-Americano/genética , Asiático/genética , População Europeia/genética , Reino Unido , Conjuntos de Dados como Assunto , Internet , Reprodutibilidade dos Testes , Estudos de Coortes , Proteoma/análise , Proteoma/metabolismo , Metaboloma , Plasma/metabolismo , Bases de Dados Factuais
9.
Cardiovasc Res ; 119(2): 587-598, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36239923

RESUMO

AIMS: The apelin receptor, a G protein-coupled receptor, has emerged as a key regulator of cardiovascular development, physiology, and disease. However, there is a lack of suitable human in vitro models to investigate the apelinergic system in cardiovascular cell types. For the first time we have used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and a novel inducible knockdown system to examine the role of the apelin receptor in both cardiomyocyte development and to determine the consequences of loss of apelin receptor function as a model of disease. METHODS AND RESULTS: Expression of the apelin receptor and its ligands in hESCs and hESC-CMs was determined. hESCs carrying a tetracycline-inducible short hairpin RNA targeting the apelin receptor were generated using the sOPTiKD system. Phenotypic assays characterized the consequences of either apelin receptor knockdown before hESC-CM differentiation (early knockdown) or in 3D engineered heart tissues as a disease model (late knockdown). hESC-CMs expressed the apelin signalling system at a similar level to the adult heart. Early apelin receptor knockdown decreased cardiomyocyte differentiation efficiency and prolonged voltage sensing, associated with asynchronous contraction. Late apelin receptor knockdown had detrimental consequences on 3D engineered heart tissue contractile properties, decreasing contractility and increasing stiffness. CONCLUSIONS: We have successfully knocked down the apelin receptor, using an inducible system, to demonstrate a key role in hESC-CM differentiation. Knockdown in 3D engineered heart tissues recapitulated the phenotype of apelin receptor down-regulation in a failing heart, providing a potential platform for modelling heart failure and testing novel therapeutic strategies.


Assuntos
Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Adulto , Humanos , Miócitos Cardíacos/metabolismo , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular
10.
Nat Commun ; 13(1): 7947, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572683

RESUMO

Although alterations in myeloid cells have been observed in COVID-19, the specific underlying mechanisms are not completely understood. Here, we examine the function of classical CD14+ monocytes in patients with mild and moderate COVID-19 during the acute phase of infection and in healthy individuals. Monocytes from COVID-19 patients display altered expression of cell surface receptors and a dysfunctional metabolic profile that distinguish them from healthy monocytes. Secondary pathogen sensing ex vivo leads to defects in pro-inflammatory cytokine and type-I IFN production in moderate COVID-19 cases, together with defects in glycolysis. COVID-19 monocytes switch their gene expression profile from canonical innate immune to pro-thrombotic signatures and are functionally pro-thrombotic, both at baseline and following ex vivo stimulation with SARS-CoV-2. Transcriptionally, COVID-19 monocytes are characterized by enrichment of pathways involved in hemostasis, immunothrombosis, platelet aggregation and other accessory pathways to platelet activation and clot formation. These results identify a potential mechanism by which monocyte dysfunction may contribute to COVID-19 pathology.


Assuntos
COVID-19 , Humanos , COVID-19/patologia , Monócitos/metabolismo , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Imunidade , Imunidade Inata
11.
Sci Transl Med ; 14(669): eabq4433, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322631

RESUMO

Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing millions of global deaths each year. To alleviate this burden, improved prognostication and biomarkers of response are urgently needed. We investigated the use of whole-blood transcriptomics for stratification of patients with severe infection by integrating data from 3149 samples from patients with sepsis due to community-acquired pneumonia or fecal peritonitis admitted to intensive care and healthy individuals into a gene expression reference map. We used this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune dysfunction and predictive of clinical outcomes, which can be estimated using a 7- or 12-gene signature. Last, we built a machine learning framework, SepstratifieR, to deploy SRSq in adult and pediatric bacterial and viral sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification across diseases and revealing some of the physiological alterations linking immune dysregulation to mortality. Our method enables early identification of individuals with dysfunctional immune profiles, bringing us closer to precision medicine in infection.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Sepse , Adulto , Humanos , Criança , Perfilação da Expressão Gênica , Sepse/genética , Transcriptoma/genética
12.
Nat Commun ; 13(1): 7356, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446790

RESUMO

Understanding how genetic variants influence disease risk and complex traits (variant-to-function) is one of the major challenges in human genetics. Here we present a model-driven framework to leverage human genome-scale metabolic networks to define how genetic variants affect biochemical reaction fluxes across major human tissues, including skeletal muscle, adipose, liver, brain and heart. As proof of concept, we build personalised organ-specific metabolic flux models for 524,615 individuals of the INTERVAL and UK Biobank cohorts and perform a fluxome-wide association study (FWAS) to identify 4312 associations between personalised flux values and the concentration of metabolites in blood. Furthermore, we apply FWAS to identify 92 metabolic fluxes associated with the risk of developing coronary artery disease, many of which are linked to processes previously described to play in role in the disease. Our work demonstrates that genetically personalised metabolic models can elucidate the downstream effects of genetic variants on biochemical reactions involved in common human diseases.


Assuntos
Tecido Adiposo , Doença da Artéria Coronariana , Humanos , Encéfalo , Genoma Humano , Coração
13.
Int J Cardiol Heart Vasc ; 39: 100980, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35242999

RESUMO

INTRODUCTION: Microvascular angina is a common cause of ischemia with non-obstructive coronary arteries (INOCA) and limited therapeutic options are available to those affected. Endothelin-1 (ET-1) is a potent vasoconstrictor implicated in the pathophysiology of microvascular angina. A large randomised, double blinded, placebo controlled crossover trial, the PRecIsion medicine with ZibotEntan in microvascular angina (PRIZE) trial is currently underway, investigating an endothelin receptor antagonist - Zibotentan, as a new drug treatment for microvascular angina. The trial uses a 'precision medicine' approach by preferential selection of those with higher ET-1 expression conferred by the PHACTR1 minor G allele single nucleotide polymorphism (SNP). The incidence of this SNP occurs in approximately one third of the population therefore a considerable number of screened patients will be ineligible for randomisation and the treatment phase of the trial. METHODS: In the PRIZE Endothelin (ET) Sub-Study, patients screened out of the PRIZE trial will be genotyped for other genetic variants in the ET-1 pathway. These will be correlated with phenotypic characteristics including exercise tolerance, angina severity and quantitative measures of microvascular function on cardiovascular MRI as well as mechanistic data on endothelin pathway signalling. CONCLUSIONS: The study will provide a comprehensive genotype and phenotype bio-resource identifying novel ET-1 genotypes to inform the potential wider use of endothelin receptor antagonists for this indication.

14.
Eur Respir J ; 59(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34446464

RESUMO

BACKGROUND: Gram-positive and Gram-negative bacteria are the most common causative pathogens in community-acquired pneumonia (CAP) on the intensive care unit (ICU). The aim of this study was to determine whether the host immune response differs between Gram-positive and Gram-negative CAP upon ICU admission. METHODS: 16 host response biomarkers providing insight into pathophysiological mechanisms implicated in sepsis and blood leukocyte transcriptomes were analysed in patients with CAP upon ICU admission in two tertiary hospitals in the Netherlands. RESULTS: 309 patients with CAP with a definite or probable likelihood (determined by predefined criteria) were included. A causative pathogen was determined in 74.4% of admissions. Patients admitted with Gram-positive CAP (n=90) were not different from those admitted with Gram-negative CAP (n=75) regarding demographics, chronic comorbidities, severity of disease and mortality. Host response biomarkers reflective of systemic inflammation, coagulation activation and endothelial cell function, as well as blood leukocyte transcriptomes, were largely similar between Gram-positive and Gram-negative CAP. Blood leukocyte transcriptomes were also similar in Gram-positive and Gram-negative CAP in two independent validation cohorts. On a pathogen-specific level, Streptococcus pneumoniae and Escherichia coli induced the most distinct host immune response. CONCLUSION: Outcome and host response are similar in critically ill patients with CAP due to Gram-positive bacteria compared with Gram-negative bacteria.


Assuntos
Infecções Comunitárias Adquiridas , Pneumonia Bacteriana , Pneumonia , Antibacterianos/uso terapêutico , Infecções Comunitárias Adquiridas/genética , Infecções Comunitárias Adquiridas/microbiologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Leucócitos , Pneumonia/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , Transcriptoma
15.
Arthritis Rheumatol ; 72(11): 1863-1871, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969204

RESUMO

OBJECTIVE: To identify interactions between genetic factors and current or recent smoking in relation to risk of developing systemic lupus erythematosus (SLE). METHODS: For the study, 673 patients with SLE (diagnosed according to the American College of Rheumatology 1997 updated classification criteria) were matched by age, sex, and race (first 3 genetic principal components) to 3,272 control subjects without a history of connective tissue disease. Smoking status was classified as current smoking/having recently quit smoking within 4 years before diagnosis (or matched index date for controls) versus distant past/never smoking. In total, 86 single-nucleotide polymorphisms and 10 classic HLA alleles previously associated with SLE were included in a weighted genetic risk score (wGRS), with scores dichotomized as either low or high based on the median value in control subjects (low wGRS being defined as less than or equal to the control median; high wGRS being defined as greater than the control median). Conditional logistic regression models were used to estimate both the risk of SLE and risk of anti-double-stranded DNA autoantibody-positive (dsDNA+) SLE. Additive interactions were assessed using the attributable proportion (AP) due to interaction, and multiplicative interactions were assessed using a chi-square test (with 1 degree of freedom) for the wGRS and for individual risk alleles. Separate repeated analyses were carried out among subjects of European ancestry only. RESULTS: The mean ± SD age of the SLE patients at the time of diagnosis was 36.4 ± 15.3 years. Among the 673 SLE patients included, 92.3% were female and 59.3% were dsDNA+. Ethnic distributions were as follows: 75.6% of European ancestry, 4.5% of Asian ancestry, 11.7% of African ancestry, and 8.2% classified as other ancestry. A high wGRS (odds ratio [OR] 2.0, P = 1.0 × 10-51 versus low wGRS) and a status of current/recent smoking (OR 1.5, P = 0.0003 versus distant past/never smoking) were strongly associated with SLE risk, with significant additive interaction (AP 0.33, P = 0.0012), and associations with the risk of anti-dsDNA+ SLE were even stronger. No significant multiplicative interactions with the total wGRS (P = 0.58) or with the HLA-only wGRS (P = 0.06) were found. Findings were similar in analyses restricted to only subjects of European ancestry. CONCLUSION: The strong additive interaction between an updated SLE genetic risk score and current/recent smoking suggests that smoking may influence specific genes in the pathogenesis of SLE.


Assuntos
Predisposição Genética para Doença , Antígenos HLA/genética , Lúpus Eritematoso Sistêmico/etiologia , Polimorfismo de Nucleotídeo Único , Fumar/efeitos adversos , Adulto , Alelos , Autoanticorpos , DNA/imunologia , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fatores Sexuais , Adulto Jovem
16.
Sci Rep ; 10(1): 9838, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555213

RESUMO

Epstein-Barr virus (EBV) reactivation is common in sepsis patients but the extent and nature of this remains unresolved. We sought to determine the incidence and correlates of EBV-positivity in a large sepsis cohort. We also hypothesised that EBV reactivation would be increased in patients in whom relative immunosuppression was the major feature of their sepsis response. To identify such patients we aimed to use knowledge of sepsis response subphenotypes based on transcriptomic studies of circulating leukocytes, specifically patients with a Sepsis Response Signature endotype (SRS1) that we have previously shown to be associated with increased mortality and features of immunosuppression. We assayed EBV from the plasma of intensive care unit (ICU) patients with sepsis due to community-acquired pneumonia. In total 730 patients were evaluated by targeted metagenomics (n = 573 patients), digital droplet PCR (n = 565), or both (n = 408). We had previously analysed gene expression in peripheral blood leukocytes for a subset of individuals (n = 390). We observed a 37% incidence of EBV-positivity. EBV reactivation was associated with longer ICU stay (12.9 vs 9.2 days; p = 0.004) and increased organ failure (day 1 SOFA score 6.9 vs 5.9; p = 0.00011). EBV reactivation was associated with the relatively immunosuppressed SRS1 endotype (p = 0.014) and differential expression of a small number of biologically relevant genes. These findings are consistent with the hypothesis that viral reactivation in sepsis is a consequence of immune compromise and is associated with increasing severity of illness although further mechanistic studies are required to definitively illustrate cause and effect.


Assuntos
Herpesvirus Humano 4/fisiologia , Hospedeiro Imunocomprometido , Pneumonia/complicações , Sepse/mortalidade , Sepse/virologia , Transcriptoma , Ativação Viral , Adolescente , Adulto , Idoso , Infecções Comunitárias Adquiridas/complicações , Feminino , Humanos , Unidades de Terapia Intensiva , Tempo de Internação , Masculino , Metagenômica , Pessoa de Meia-Idade , Sepse/complicações , Sepse/genética , Adulto Jovem
17.
Am J Hum Genet ; 104(5): 879-895, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006511

RESUMO

Despite significant progress in annotating the genome with experimental methods, much of the regulatory noncoding genome remains poorly defined. Here we assert that regulatory elements may be characterized by leveraging local epigenomic signatures where specific transcription factors (TFs) are bound. To link these two features, we introduce IMPACT, a genome annotation strategy that identifies regulatory elements defined by cell-state-specific TF binding profiles, learned from 515 chromatin and sequence annotations. We validate IMPACT using multiple compelling applications. First, IMPACT distinguishes between bound and unbound TF motif sites with high accuracy (average AUPRC 0.81, SE 0.07; across 8 tested TFs) and outperforms state-of-the-art TF binding prediction methods, MocapG, MocapS, and Virtual ChIP-seq. Second, in eight tested cell types, RNA polymerase II IMPACT annotations capture more cis-eQTL variation than sequence-based annotations, such as promoters and TSS windows (25% average increase in enrichment). Third, integration with rheumatoid arthritis (RA) summary statistics from European (N = 38,242) and East Asian (N = 22,515) populations revealed that the top 5% of CD4+ Treg IMPACT regulatory elements capture 85.7% of RA h2, the most comprehensive explanation for RA h2 to date. In comparison, the average RA h2 captured by compared CD4+ T histone marks is 42.3% and by CD4+ T specifically expressed gene sets is 36.4%. Lastly, we find that IMPACT may be used in many different cell types to identify complex trait associated regulatory elements.


Assuntos
Artrite Reumatoide/metabolismo , Epigenoma , Epigenômica/métodos , Genoma Humano , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Artrite Reumatoide/genética , Cromatina/genética , Cromatina/metabolismo , Biologia Computacional/métodos , Histonas/genética , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética
18.
Genome Biol ; 19(1): 168, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340504

RESUMO

BACKGROUND: Cytokines are critical to human disease and are attractive therapeutic targets given their widespread influence on gene regulation and transcription. Defining the downstream regulatory mechanisms influenced by cytokines is central to defining drug and disease mechanisms. One promising strategy is to use interactions between expression quantitative trait loci (eQTLs) and cytokine levels to define target genes and mechanisms. RESULTS: In a clinical trial for anti-IL-6 in patients with systemic lupus erythematosus, we measure interferon (IFN) status, anti-IL-6 drug exposure, and whole blood genome-wide gene expression at three time points. We show that repeat transcriptomic measurements increases the number of cis eQTLs identified compared to using a single time point. We observe a statistically significant enrichment of in vivo eQTL interactions with IFN status and anti-IL-6 drug exposure and find many novel interactions that have not been previously described. Finally, we find transcription factor binding motifs interrupted by eQTL interaction SNPs, which point to key regulatory mediators of these environmental stimuli and therefore potential therapeutic targets for autoimmune diseases. In particular, genes with IFN interactions are enriched for ISRE binding site motifs, while those with anti-IL-6 interactions are enriched for IRF4 motifs. CONCLUSIONS: This study highlights the potential to exploit clinical trial data to discover in vivo eQTL interactions with therapeutically relevant environmental variables.


Assuntos
Citocinas/genética , Regulação da Expressão Gênica , Lúpus Eritematoso Sistêmico/genética , Locos de Características Quantitativas/genética , Humanos
19.
Nat Commun ; 9(1): 694, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449546

RESUMO

Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765-0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis.


Assuntos
Biomarcadores/sangue , Infecções Comunitárias Adquiridas/mortalidade , Infecção Hospitalar/mortalidade , Sepse/sangue , Sepse/mortalidade , Perfilação da Expressão Gênica , Humanos , Modelos Teóricos , Prognóstico , Sepse/genética , Índice de Gravidade de Doença
20.
Lancet Respir Med ; 5(10): 816-826, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28864056

RESUMO

BACKGROUND: Host responses during sepsis are highly heterogeneous, which hampers the identification of patients at high risk of mortality and their selection for targeted therapies. In this study, we aimed to identify biologically relevant molecular endotypes in patients with sepsis. METHODS: This was a prospective observational cohort study that included consecutive patients admitted for sepsis to two intensive care units (ICUs) in the Netherlands between Jan 1, 2011, and July 20, 2012 (discovery and first validation cohorts) and patients admitted with sepsis due to community-acquired pneumonia to 29 ICUs in the UK (second validation cohort). We generated genome-wide blood gene expression profiles from admission samples and analysed them by unsupervised consensus clustering and machine learning. The primary objective of this study was to establish endotypes for patients with sepsis, and assess the association of these endotypes with clinical traits and survival outcomes. We also established candidate biomarkers for the endotypes to allow identification of patient endotypes in clinical practice. FINDINGS: The discovery cohort had 306 patients, the first validation cohort had 216, and the second validation cohort had 265 patients. Four molecular endotypes for sepsis, designated Mars1-4, were identified in the discovery cohort, and were associated with 28-day mortality (log-rank p=0·022). In the discovery cohort, the worst outcome was found for patients classified as having a Mars1 endotype, and at 28 days, 35 (39%) of 90 people with a Mars1 endotype had died (hazard ratio [HR] vs all other endotypes 1·86 [95% CI 1·21-2·86]; p=0·0045), compared with 23 (22%) of 105 people with a Mars2 endotype (HR 0·64 [0·40-1·04]; p=0·061), 16 (23%) of 71 people with a Mars3 endotype (HR 0·71 [0·41-1·22]; p=0·19), and 13 (33%) of 40 patients with a Mars4 endotype (HR 1·13 [0·63-2·04]; p=0·69). Analysis of the net reclassification improvement using a combined clinical and endotype model significantly improved risk prediction to 0·33 (0·09-0·58; p=0·008). A 140-gene expression signature reliably stratified patients with sepsis to the four endotypes in both the first and second validation cohorts. Only Mars1 was consistently significantly associated with 28-day mortality across the cohorts. To facilitate possible clinical use, a biomarker was derived for each endotype; BPGM and TAP2 reliably identified patients with a Mars1 endotype. INTERPRETATION: This study provides a method for the molecular classification of patients with sepsis to four different endotypes upon ICU admission. Detection of sepsis endotypes might assist in providing personalised patient management and in selection for trials. FUNDING: Center for Translational Molecular Medicine, Netherlands.


Assuntos
Genômica/métodos , Fenótipo , Sepse/classificação , Sepse/genética , Idoso , Infecções Comunitárias Adquiridas/complicações , Infecções Comunitárias Adquiridas/genética , Feminino , Perfilação da Expressão Gênica , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Pneumonia/complicações , Pneumonia/genética , Estudos Prospectivos , Sepse/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA