Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NAR Genom Bioinform ; 6(3): lqae103, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39170861

RESUMO

Several novel high-throughput experimental techniques have been developed in recent years that generate large datasets of putative biologically functional peptides. However, many of the computational tools required to process these datasets have not yet been created. In this study, we introduce FaSTPACE, a fast and scalable computational tool to rapidly align short peptides and extract enriched specificity determinants. The tool aligns peptides in a pairwise manner to produce a position-specific global similarity matrix for each peptide. Peptides are realigned in an iterative manner scoring the updated alignment based on the global similarity matrices of the peptides and updating the global similarity matrices based on the new alignment. The method then iterates until the global similarity matrices converge. Finally, an alignment and consensus motif are extracted from the resulting global similarity matrices. The tool is the first to support custom weighting for the input peptides to satisfy the pressing need to include experimental attributes encoding peptide confidence in specificity determinant extraction. FaSTPACE exhibited state-of-the-art performance and accuracy when benchmarked against similar tools on motif datasets generated using curated peptides and high-throughput data from proteomic peptide phage display. FaSTPACE is available as an open-source Python package and a web server.

2.
Mol Syst Biol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009827

RESUMO

Whole genome and exome sequencing are reporting on hundreds of thousands of missense mutations. Taking a pan-disease approach, we explored how mutations in intrinsically disordered regions (IDRs) break or generate protein interactions mediated by short linear motifs. We created a peptide-phage display library tiling ~57,000 peptides from the IDRs of the human proteome overlapping 12,301 single nucleotide variants associated with diverse phenotypes including cancer, metabolic diseases and neurological diseases. By screening 80 human proteins, we identified 366 mutation-modulated interactions, with half of the mutations diminishing binding, and half enhancing binding or creating novel interaction interfaces. The effects of the mutations were confirmed by affinity measurements. In cellular assays, the effects of motif-disruptive mutations were validated, including loss of a nuclear localisation signal in the cell division control protein CDC45 by a mutation associated with Meier-Gorlin syndrome. The study provides insights into how disease-associated mutations may perturb and rewire the motif-based interactome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA