Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(11): e51709, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36094794

RESUMO

Phosphatidylserine (PS) is a critical lipid factor in the assembly and spread of numerous lipid-enveloped viruses. Here, we describe the ability of the Ebola virus (EBOV) matrix protein eVP40 to induce clustering of PS and promote viral budding in vitro, as well as the ability of an FDA-approved drug, fendiline, to reduce PS clustering and subsequent virus budding and entry. To gain mechanistic insight into fendiline inhibition of EBOV replication, multiple in vitro assays were run including imaging, viral budding and viral entry assays. Fendiline lowers PS content in mammalian cells and PS in the plasma membrane, where the ability of VP40 to form new virus particles is greatly lower. Further, particles that form from fendiline-treated cells have altered particle morphology and cannot significantly infect/enter cells. These complementary studies reveal the mechanism by which EBOV matrix protein clusters PS to enhance viral assembly, budding, and spread from the host cell while also laying the groundwork for fundamental drug targeting strategies.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Doença pelo Vírus Ebola/metabolismo , Ebolavirus/fisiologia , Fosfatidilserinas/metabolismo , Fendilina/metabolismo , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Análise por Conglomerados , Mamíferos/metabolismo
2.
J Biol Chem ; 296: 100103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33214224

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in December 2019 in Wuhan, China, and expeditiously spread across the globe causing a global pandemic. Research on SARS-CoV-2, as well as the closely related SARS-CoV-1 and MERS coronaviruses, is restricted to BSL-3 facilities. Such BSL-3 classification makes SARS-CoV-2 research inaccessible to the majority of functioning research laboratories in the United States; this becomes problematic when the collective scientific effort needs to be focused on such in the face of a pandemic. However, a minimal system capable of recapitulating different steps of the viral life cycle without using the virus' genetic material could increase accessibility. In this work, we assessed the four structural proteins from SARS-CoV-2 for their ability to form virus-like particles (VLPs) from human cells to form a competent system for BSL-2 studies of SARS-CoV-2. Herein, we provide methods and resources of producing, purifying, fluorescently and APEX2-labeling of SARS-CoV-2 VLPs for the evaluation of mechanisms of viral budding and entry as well as assessment of drug inhibitors under BSL-2 conditions. These systems should be useful to those looking to circumvent BSL-3 work with SARS-CoV-2 yet study the mechanisms by which SARS-CoV-2 enters and exits human cells.


Assuntos
Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Vírion/crescimento & desenvolvimento , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Contenção de Riscos Biológicos/classificação , Proteínas do Envelope de Coronavírus/metabolismo , Expressão Gênica , Genes Reporter , Regulamentação Governamental , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura , Montagem de Vírus/fisiologia , Internalização do Vírus , Liberação de Vírus/fisiologia , Proteína Vermelha Fluorescente
3.
bioRxiv ; 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33024964

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in December 2019 in Wuhan, China and expeditiously spread across the globe causing a global pandemic. While a select agent designation has not been made for SARS-CoV-2, closely related SARS-CoV-1 and MERS coronaviruses are classified as Risk Group 3 select agents, which restricts use of the live viruses to BSL-3 facilities. Such BSL-3 classification make SARS-CoV-2 research inaccessible to the majority of functioning research laboratories in the US; this becomes problematic when the collective scientific effort needs to be focused on such in the face of a pandemic. In this work, we assessed the four structural proteins from SARS-CoV-2 for their ability to form viruslike particles (VLPs) from human cells to form a competent system for BSL-2 studies of SARS-CoV-2. Herein, we provide methods and resources of producing, purifying, fluorescently and APEX2-labeling of SARS-CoV-2 VLPs for the evaluation of mechanisms of viral budding and entry as well as assessment of drug inhibitors under BSL-2 conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA