Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(11): e17570, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37819151

RESUMO

The crosstalk between cancer and stromal cells plays a critical role in tumor progression. Syntenin is a small scaffold protein involved in the regulation of intercellular communication that is emerging as a target for cancer therapy. Here, we show that certain aggressive forms of acute myeloid leukemia (AML) reduce the expression of syntenin in bone marrow stromal cells (BMSC). Stromal syntenin deficiency, in turn, generates a pro-tumoral microenvironment. From serial transplantations in mice and co-culture experiments, we conclude that syntenin-deficient BMSC stimulate AML aggressiveness by promoting AML cell survival and protein synthesis. This pro-tumoral activity is supported by increased expression of endoglin, a classical marker of BMSC, which in trans stimulates AML translational activity. In short, our study reveals a vicious signaling loop potentially at the heart of AML-stroma crosstalk and unsuspected tumor-suppressive effects of syntenin that need to be considered during systemic targeting of syntenin in cancer therapy.


Assuntos
Leucemia Mieloide Aguda , Sinteninas , Animais , Camundongos , Sinteninas/genética , Sinteninas/metabolismo , Regulação para Baixo , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 120(38): e2310914120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695903

RESUMO

Extracellular vesicles (EVs) are membrane-limited organelles mediating cell-to-cell communication in health and disease. EVs are of high medical interest, but their rational use for diagnostics or therapies is restricted by our limited understanding of the molecular mechanisms governing EV biology. Here, we tested whether PDZ proteins, molecular scaffolds that support the formation, transport, and function of signal transduction complexes and that coevolved with multicellularity, may represent important EV regulators. We reveal that the PDZ proteome (ca. 150 proteins in human) establishes a discrete number of direct interactions with the tetraspanins CD9, CD63, and CD81, well-known EV constituents. Strikingly, PDZ proteins interact more extensively with syndecans (SDCs), ubiquitous membrane proteins for which we previously demonstrated an important role in EV biogenesis, loading, and turnover. Nine PDZ proteins were tested in loss-of-function studies. We document that these PDZ proteins regulate both tetraspanins and SDCs, differentially affecting their steady-state levels, subcellular localizations, metabolism, endosomal budding, and accumulations in EVs. Importantly, we also show that PDZ proteins control the levels of heparan sulfate at the cell surface that functions in EV capture. In conclusion, our study establishes that the extensive networking of SDCs, tetraspanins, and PDZ proteins contributes to EV heterogeneity and turnover, highlighting an important piece of the molecular framework governing intracellular trafficking and intercellular communication.


Assuntos
Vesículas Extracelulares , Transdução de Sinais , Humanos , Transporte Biológico , Comunicação Celular , Divisão Celular , Sindecanas , Fatores de Transcrição
3.
Front Cell Dev Biol ; 10: 886381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669514

RESUMO

Matrix metalloproteinases (MMPs) are key players in matrix remodeling and their function has been particularly investigated in cancer biology. Indeed, through extracellular matrix (ECM) degradation and shedding of diverse cell surface macromolecules, they are implicated in different steps of tumor development, from local expansion by growth to tissue invasion and metastasis. Interestingly, MMPs are also components of extracellular vesicles (EVs). EVs are membrane-limited organelles that cells release in their extracellular environment. These "secreted" vesicles are now well accepted players in cell-to-cell communication. EVs have received a lot of interest in recent years as they are also envisioned as sources of biomarkers and as potentially outperforming vehicles for the delivery of therapeutics. Molecular machineries governing EV biogenesis, cargo loading and delivery to recipient cells are complex and still under intense investigation. In this review, we will summarize the state of the art of our knowledge about the molecular mechanisms implicated in MMP trafficking and secretion. We focus on MT1-MMP, a major effector of invasive cell behavior. We will also discuss how this knowledge is of interest for a better understanding of EV-loading of MMPs. Such knowledge might be of use to engineer novel strategies for cancer treatment. A better understanding of these mechanisms could also be used to design more efficient EV-based therapies.

4.
Med Sci (Paris) ; 37(12): 1101-1107, 2021 Dec.
Artigo em Francês | MEDLINE | ID: mdl-34928212

RESUMO

Exosomes are small extracellular vesicles derived from endosomal compartments. The molecular mechanisms supporting the biology of exosomes, from their biogenesis to their internalization by target cells, rely on 'dedicated' membrane proteins. These mechanisms of action need to be further clarified. This will help to better understand how exosome composition and heterogeneity are established. This would also help to rationalize their use as source of biomarkers and therapeutic tools. Here we discuss how syndecans and tetraspanins, two families of membrane scaffold proteins, cooperate to regulate different steps of exosome biology.


TITLE: Tétraspanines et syndécanes - Complices dans le « trafic ¼ des exosomes ? ABSTRACT: Les exosomes sont de petites vésicules extracellulaires qui sont produites dans des compartiments endosomaux. Les mécanismes moléculaires sur lesquels reposent la biologie des exosomes, de leur biogenèse à leur internalisation par les cellules cibles, font notamment appel à des protéines membranaires particulières. Ces mécanismes méritent d'être clarifiés, afin de mieux comprendre la complexité de la composition des exosomes et de rationaliser leur utilisation comme biomarqueurs ou comme outils thérapeutiques. Nous discutons ici comment les syndécanes et les tétraspanines, deux familles de protéines d'échafaudage, coopèrent pour réguler les différentes étapes de la biologie des exosomes.


Assuntos
Exossomos , Crime , Sindecanas , Tetraspaninas
5.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946571

RESUMO

HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This "two-way" activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1.


Assuntos
Endotélio/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Linfócitos/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Adesão Celular , Movimento Celular , Endotélio/química , Proteoglicanas de Heparan Sulfato/química , Humanos , Linfócitos/química , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Células Tumorais Cultivadas , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
6.
Sci Rep ; 11(1): 4083, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602969

RESUMO

Exosomal transfers represent an important mode of intercellular communication. Syntenin is a small scaffold protein that, when binding ALIX, can direct endocytosed syndecans and syndecan cargo to budding endosomal membranes, supporting the formation of intraluminal vesicles that compose the source of a major class of exosomes. Syntenin, however, can also support the recycling of these same components to the cell surface. Here, by studying mice and cells with syntenin-knock out, we identify syntenin as part of dedicated machinery that integrates both the production and the uptake of secreted vesicles, supporting viral/exosomal exchanges. This study significantly extends the emerging role of heparan sulfate proteoglycans and syntenin as key components for macromolecular cargo internalization into cells.


Assuntos
Exossomos/metabolismo , Sinteninas/fisiologia , Animais , Exossomos/virologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes/métodos , Humanos , Células MCF-7 , Camundongos , Sinteninas/metabolismo , Transdução Genética
7.
Adv Exp Med Biol ; 1221: 285-307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274714

RESUMO

Exosomes are secreted vesicles involved in signaling processes. The biogenesis of a class of these extracellular vesicles depends on syntenin, and on the interaction of this cytosolic protein with syndecans. Heparanase, largely an endosomal enzyme, acts as a regulator of the syndecan-syntenin-exosome biogenesis pathway. The upregulation of syntenin and heparanase in cancers may support the suspected roles of exosomes in tumor biology.


Assuntos
Exossomos/metabolismo , Glucuronidase/metabolismo , Humanos , Sindecanas , Sinteninas
8.
Proc Natl Acad Sci U S A ; 117(11): 5913-5922, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32108028

RESUMO

Exosomes, extracellular vesicles (EVs) of endosomal origin, emerge as master regulators of cell-to-cell signaling in physiology and disease. Exosomes are highly enriched in tetraspanins (TSPNs) and syndecans (SDCs), the latter occurring mainly in proteolytically cleaved form, as membrane-spanning C-terminal fragments of the proteins. While both protein families are membrane scaffolds appreciated for their role in exosome formation, composition, and activity, we currently ignore whether these work together to control exosome biology. Here we show that TSPN6, a poorly characterized tetraspanin, acts as a negative regulator of exosome release, supporting the lysosomal degradation of SDC4 and syntenin. We demonstrate that TSPN6 tightly associates with SDC4, the SDC4-TSPN6 association dictating the association of TSPN6 with syntenin and the TSPN6-dependent lysosomal degradation of SDC4-syntenin. TSPN6 also inhibits the shedding of the SDC4 ectodomain, mimicking the effects of matrix metalloproteinase inhibitors. Taken together, our data identify TSPN6 as a regulator of the trafficking and processing of SDC4 and highlight an important physical and functional interconnection between these membrane scaffolds for the production of exosomes. These findings clarify our understanding of the molecular determinants governing EV formation and have potentially broad impact for EV-related biomedicine.


Assuntos
Exossomos/metabolismo , Sinteninas/metabolismo , Tetraspaninas/metabolismo , Comunicação Celular , Exossomos/genética , Vesículas Extracelulares/metabolismo , Humanos , Lisossomos/metabolismo , Células MCF-7 , Metaloproteinases da Matriz/metabolismo , Transporte Proteico , Sindecana-4/metabolismo , Sindecanas/metabolismo
9.
Environ Entomol ; 48(1): 134-140, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30371766

RESUMO

The outbreak of the coconut scale insect Aspidiotus rigidus Reyne (Hemiptera: Encyrtidae) posed a serious threat to the coconut industry in the Philippines. In this article, we modeled the interaction between A. rigidus and its parasitoid Comperiella calauanica Barrion, Almarinez, Amalin (Hymenoptera: Encyrtidae) using a system of ordinary differential equations based on a Holling type III functional response. The equilibrium points were determined, and their local stability was examined. Numerical simulations showed that C. calauanica may control the population density of A. rigidus below the economic injury level.


Assuntos
Hemípteros/parasitologia , Interações Hospedeiro-Parasita , Modelos Biológicos , Vespas/fisiologia , Animais
10.
Proc Natl Acad Sci U S A ; 114(47): 12495-12500, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109268

RESUMO

The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin-syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell-cell communication, supported by syntenin exosomes, which is likely to contribute to tumor-host interactions.


Assuntos
Comunicação Celular/genética , Exossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteína Oncogênica pp60(v-src)/genética , Sinteninas/genética , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Motivos de Aminoácidos , Movimento Celular , Proliferação de Células , Meios de Cultivo Condicionados/farmacologia , Endocitose , Endossomos/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células MCF-7 , Proteína Oncogênica pp60(v-src)/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Fosforilação , Transdução de Sinais , Sindecanas/genética , Sindecanas/metabolismo , Sinteninas/metabolismo
11.
Mol Cell Oncol ; 3(3): e1047556, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27314072

RESUMO

Exosomes are secreted vesicles involved in signaling processes. The biogenesis of a class of these vesicles depends on syntenin and syndecans. Heparanase acts as a regulator of the syndecan-syntenin-exosome biogenesis pathway. The upregulation of syntenin and heparanase in cancers may support the suspected roles of exosomes in tumor biology.

12.
Biol Cell ; 107(10): 331-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26032692

RESUMO

Cells communicate with their environment in various ways, including by secreting vesicles. Secreted vesicles are loaded with proteins, lipids and RNAs that compose 'a signature' of the cell of origin and potentially can reprogram recipient cells. Secreted vesicles recently gained in interest for medicine. They represent potential sources of biomarkers that can be collected from body fluids and, by disseminating pathogenic proteins, might also participate in systemic diseases like cancer, atherosclerosis and neurodegeneration. The mechanisms controlling the biogenesis and the uptake of secreted vesicles are poorly understood. Some of these vesicles originate from endosomes and are called 'exosomes'. In this review, we recapitulate recent insight on the role of the syndecan (SDC) heparan sulphate proteoglycans, the small intracellular adaptor syntenin and associated regulators in the biogenesis and loading of exosomes with cargo. SDC-syntenin-associated regulators include the endosomal sorting complex required for transport accessory component ALG-2-interacting protein X, the small GTPase adenosine 5'-diphosphate-ribosylation factor 6, the lipid-modifying enzyme phospholipase D2 and the endoglycosidase heparanase. All these molecules appear to support the budding of SDC-syntenin and associated cargo into the lumen of endosomes. This highlights a major mechanism for the formation of intraluminal vesicles that will be released as exosomes.


Assuntos
Exossomos/metabolismo , Sindecanas/metabolismo , Sinteninas/metabolismo , Animais , Humanos
13.
Cell Res ; 25(4): 412-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25732677

RESUMO

Exosomes are secreted vesicles of endosomal origin involved in signaling processes. We recently showed that the syndecan heparan sulfate proteoglycans control the biogenesis of exosomes through their interaction with syntenin-1 and the endosomal-sorting complex required for transport accessory component ALIX. Here we investigated the role of heparanase, the only mammalian enzyme able to cleave heparan sulfate internally, in the syndecan-syntenin-ALIX exosome biogenesis pathway. We show that heparanase stimulates the exosomal secretion of syntenin-1, syndecan and certain other exosomal cargo, such as CD63, in a concentration-dependent manner. In contrast, exosomal CD9, CD81 and flotillin-1 are not affected. Conversely, reduction of endogenous heparanase reduces the secretion of syntenin-1-containing exosomes. The ability of heparanase to stimulate exosome production depends on syntenin-1 and ALIX. Syndecans, but not glypicans, support exosome biogenesis in heparanase-exposed cells. Finally, heparanase stimulates intraluminal budding of syndecan and syntenin-1 in endosomes, depending on the syntenin-ALIX interaction. Taken together, our findings identify heparanase as a modulator of the syndecan-syntenin-ALIX pathway, fostering endosomal membrane budding and the biogenesis of exosomes by trimming the heparan sulfate chains on syndecans. In addition, our data suggest that this mechanism controls the selection of specific cargo to exosomes.


Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ciclo Celular/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Glucuronidase/genética , Sindecanas/biossíntese , Sinteninas/biossíntese , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucuronidase/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Células MCF-7 , Proteínas de Membrana/biossíntese , Transdução de Sinais , Sindecanas/genética , Sinteninas/genética
14.
J Cell Sci ; 126(Pt 21): 4856-61, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23986479

RESUMO

Proteolytic processing of amyloid-ß precursor protein (APP) generates the amyloid-ß peptide, which plays a central role in Alzheimer disease. The physiological function of APP and its proteolytic fragments, however, remains barely understood. Here we show that, on the basis of its binding characteristics, the secreted ectodomain of APP (sAPP) is a new member of the heparin-binding growth factor superfamily. Like other of its members, sAPP binds in a bivalent manner to the plasma membrane with two different subdomains. The N-terminal growth-factor-like domain (GFLD) is necessary and sufficient for protein-receptor binding, whereas the E2-domain mediates interaction with membrane-anchored heparan sulfate proteoglycans (HSPGs). The membrane-anchored HSPGs function as low-affinity co-receptors for sAPP and enhance the affinity to the sAPP receptor. Our findings provide a solid basis for the further identification of this receptor.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glipicanas/metabolismo , Receptores de Superfície Celular/metabolismo , Sindecana-2/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Células CHO , Cricetulus , Glipicanas/genética , Humanos , Camundongos , Neurônios/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Sindecana-2/genética
15.
Biochem J ; 448(1): 73-82, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22920187

RESUMO

The PC (proprotein convertase) furin cleaves a large variety of proproteins and hence plays a major role in many pathologies. Therefore furin inhibition might be a good strategy for therapeutic intervention, and several furin inhibitors have been generated, although none are entirely furin-specific. To reduce potential side effects caused by cross-reactivity with other proteases, dromedary heavy-chain-derived nanobodies against catalytically active furin were developed as specific furin inhibitors. The nanobodies bound only to furin but not to other PCs. Upon overexpression in cell lines, they inhibited the cleavage of two different furin substrates, TGFß (transforming growth factor ß) and GPC3 (glypican 3). Purified nanobodies could inhibit the cleavage of diphtheria toxin into its enzymatically active A fragment, but did not inhibit cleavage of a small synthetic peptide-based substrate, suggesting a mode-of-action based on steric hindrance. The dissociation constant of purified nanobody 14 is in the nanomolar range. The nanobodies were non-competitive inhibitors with an inhibitory constant in the micromolar range as demonstrated by Dixon plot. Furthermore, anti-furin nanobodies could protect HEK (human embryonic kidney)-293T cells from diphtheria-toxin-induced cytotoxicity as efficiently as the PC inhibitor nona-D-arginine. In conclusion, these antibody-based single-domain nanobodies represent the first generation of highly specific non-competitive furin inhibitors.


Assuntos
Furina/antagonistas & inibidores , Anticorpos de Domínio Único/farmacologia , Animais , Especificidade de Anticorpos , Camelus , Catálise/efeitos dos fármacos , Cumarínicos/metabolismo , Toxina Diftérica/metabolismo , Endocitose , Furina/química , Furina/imunologia , Furina/metabolismo , Glipicanas/metabolismo , Células HEK293/metabolismo , Humanos , Cinética , Camundongos , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Pró-Proteína Convertases/metabolismo , Ligação Proteica/efeitos dos fármacos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Especificidade por Substrato , Fator de Crescimento Transformador beta/metabolismo
16.
Nat Cell Biol ; 14(7): 677-85, 2012 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-22660413

RESUMO

The biogenesis of exosomes, small secreted vesicles involved in signalling processes, remains incompletely understood. Here, we report evidence that the syndecan heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin control the formation of exosomes. Syntenin interacts directly with ALIX through LYPX(n)L motifs, similarly to retroviral proteins, and supports the intraluminal budding of endosomal membranes. Syntenin exosomes depend on the availability of heparan sulphate, syndecans, ALIX and ESCRTs, and impact on the trafficking and confinement of FGF signals. This study identifies a key role for syndecan-syntenin-ALIX in membrane transport and signalling processes.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Transdução de Sinais , Sindecanas/metabolismo , Sinteninas/metabolismo , Animais , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Interferência de RNA , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sindecanas/genética , Sinteninas/genética , Fatores de Tempo , Transfecção
17.
J Cell Sci ; 125(Pt 5): 1129-40, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22399807

RESUMO

Epiboly, the spreading and the thinning of the blastoderm to cover the yolk cell and close the blastopore in fish embryos, is central to the process of gastrulation. Despite its fundamental importance, little is known about the molecular mechanisms that control this coordinated cell movement. By a combination of knockdown studies and rescue experiments in zebrafish (Danio rerio), we show that epiboly relies on the molecular networking of syntenin with syndecan heparan sulphate proteoglycans, which act as co-receptors for adhesion molecules and growth factors. Furthermore, we show that the interaction of syntenin with phosphatidylinositol 4,5-bisphosphate (PIP2) and with the small GTPase ADP-ribosylation factor 6 (Arf6), which regulate the endocytic recycling of syndecan, is necessary for epiboly progression. Analysis of the earliest cellular defects suggests a role for syntenin in the autonomous vegetal expansion of the yolk syncytial layer and the rearrangement of the actin cytoskeleton in extra-embryonic tissues, but not in embryonic cell fate determination. This study identifies the importance of the syntenin-syndecan-PIP2-Arf6 complex for the progression of fish epiboly and establishes its key role in directional cell movements during early development.


Assuntos
Gastrulação/fisiologia , Sindecanas/metabolismo , Sinteninas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Movimento Celular/fisiologia , Citoesqueleto/genética , Técnicas de Silenciamento de Genes , Camundongos , Dados de Sequência Molecular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sinteninas/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
18.
EMBO Rep ; 12(10): 1039-46, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21836636

RESUMO

Here we identify a new role for Syndecan (Sdc), the only transmembrane heparan sulphate proteoglycan in Drosophila, in tracheal development. Sdc is required cell autonomously for efficient directed migration and fusion of dorsal branch cells, but not for dorsal branch formation per se. The cytoplasmic domain of Sdc is dispensable, indicating that Sdc does not transduce a signal by itself. Although the branch-specific phenotype of sdc mutants resembles those seen in the absence of Slit/Robo2 signalling, genetic interaction experiments indicate that Sdc also helps to suppress Slit/Robo2 signalling. We conclude that Sdc cell autonomously regulates Slit/Robo2 signalling in tracheal cells to guarantee ordered directional migration and branch fusion.


Assuntos
Movimento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Sindecanas/metabolismo , Animais , Sequência de Bases , Movimento Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica , Ordem dos Genes , Dados de Sequência Molecular , Fenótipo , Estabilidade Proteica , Alinhamento de Sequência , Transdução de Sinais , Sindecanas/genética , Traqueia/metabolismo , Proteínas Roundabout
19.
Fertil Steril ; 95(8): 2608-11.e1, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21704213

RESUMO

Immunohistochemistry and semiquantitative analysis were used to examine and compare the expression of syndecans 1-4 in the endometrium and myometrium throughout the menstrual cycle. Syndecans molecules show different temporal and spatial expression during the menstrual cycle, and the modulation of syn-2 expression is statistically significantly correlated to morphologic and functional changes of the endometrium, particularly in the periovulatory period.


Assuntos
Endométrio/metabolismo , Ciclo Menstrual/metabolismo , Miométrio/metabolismo , Sindecanas/metabolismo , Adulto , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Sindecana-1/metabolismo , Sindecana-2/metabolismo , Sindecana-3/metabolismo , Sindecana-4/metabolismo
20.
J Biol Chem ; 286(9): 7577-86, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21193412

RESUMO

Pregnancy-specific ß1 glycoproteins (PSGs) are the most abundant fetal proteins in the maternal bloodstream in late pregnancy. They are secreted by the syncytiotrophoblast and are detected around day 14 postfertilization. There are 11 human PSG genes, which encode a family of proteins exhibiting significant conservation at the amino acid level. We and others have proposed that PSGs have an immune modulatory function. In addition, we recently postulated that they are proangiogenic due to their ability to induce the secretion of VEGF-A and the formation of tubes by endothelial cells. The cellular receptor(s) for human PSGs remain unknown. Therefore, we conducted these studies to identify the receptor for PSG1, the highest expressed member of the family. We show that removal of cell surface glycosaminoglycans (GAGs) by enzymatic or chemical treatment of cells or competition with heparin completely inhibited binding of PSG1. In addition, PSG1 did not bind to cells lacking heparan or chondroitin sulfate on their surface, and binding was restored upon transfection with all four syndecans and glypican-1. Importantly, the presence of GAGs on the surface of endothelial cells was required for the ability of PSG1 to induce tube formation. This finding indicates that the PSG1-GAG interaction mediates at least some of the PSG1 proposed functions.


Assuntos
Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Glicoproteínas beta 1 Específicas da Gravidez/metabolismo , Receptores de Superfície Celular/metabolismo , Trofoblastos/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Células Endoteliais/metabolismo , Feminino , Células HeLa , Heparina/metabolismo , Humanos , Células Jurkat , Camundongos , Células NIH 3T3 , Neovascularização Fisiológica/fisiologia , Gravidez , Glicoproteínas beta 1 Específicas da Gravidez/genética , Sindecanas/metabolismo , Transfecção , Trofoblastos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA