Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 45(4): 1268-75, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27380075

RESUMO

The Illinois River is a major contributor of nitrate-N to the Mississippi River and the Gulf of Mexico, where nitrate is a leading cause of summertime benthic hypoxia. Corn-soybean production on tile-drained land is a leading source of nitrate-N in this river system, in addition to municipal wastewater discharge. We calculated annual nitrate-N loads in the Illinois River at Valley City from 1976 to 2014 by linear interpolation. Although there was not a significant trend in annual loads during the entire study period, there was a significant downward trend in flow-weighted nitrate-N concentration after 1990 despite high concentrations in 2013 after the 2012 drought. Multivariate regression analysis revealed a statistically significant association between annual flow-weighted nitrate-N concentration and cumulative residual agricultural N inputs to the watershed during a 6-yr window. This suggests that declines in flow-weighted nitrate-N concentration may reflect increasing N use efficiency in agriculture and a depletion of legacy N stored in the watershed. The watershed appears to have transitioned from a state of stationarity in nitrate concentration to nonstationarity. The average annual nitrate-N load at Valley City from 2010 to 2014 was 10% less than the 1980-1996 average load, indicating recent progress toward Illinois' nutrient loss reduction milestone of 15% reduction by 2025 and ultimate target of 45% reduction.


Assuntos
Agricultura , Nitratos/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Illinois , Mississippi , Rios
2.
J Environ Qual ; 45(4): 1313-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27380080

RESUMO

Sulfur received extensive study as an input to terrestrial ecosystems from acidic deposition during the 1980s. With declining S deposition inputs across the eastern United States, there have been many studies evaluating ecosystem response, with the exception of agricultural watersheds. We used long-term (22 and 18 yr) sulfate concentration data from two rivers and recent (6 yr) data from a third river to better understand cycling and transport of S in agricultural, tile-drained watersheds. Sulfate concentrations and yields steadily declined in the Embarras (from ∼10 to 6 mg S L) and Kaskaskia rivers (from 7 to 3.5 mg S L) during the sampling period, with an overall -23.1 and -12.8 kg S ha yr balance for the two watersheds. There was evidence of deep groundwater inputs of sulfate in the Salt Fork watershed, with a much smaller input to the Embarras and none to the Kaskaskia. Tiles in the watersheds had low sulfate concentrations (<10 mg S L), similar to the Kaskaskia River, unless the field had received some form of S fertilizer. A multiple regression model of runoff (cm) and S deposition explained much of the variation in Embarras River sulfate ( = 0.86 and 0.80 for concentrations and yields; = 46). Although atmospheric deposition was much less than outputs (grain harvest + stream export of sulfate), riverine transport of sulfate reflected the decline in inputs. Watershed S balances suggest a small annual depletion of soil organic S pools, and S fertilization will likely be needed at some future date to maintain crop yields.


Assuntos
Agricultura , Sulfatos/análise , Enxofre/análise , Monitoramento Ambiental , Fertilizantes , Rios , Movimentos da Água
3.
J Environ Qual ; 45(3): 822-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27136147

RESUMO

Tile drainage is the major source of nitrate in the upper Midwest, and end-of-tile removal techniques such as wood chip bioreactors have been installed that allow current farming practices to continue, with nitrate removed through denitrification. There have been few multiyear studies of bioreactors examining controls on nitrate removal rates. We evaluated the nitrate removal performance of two wood chip bioreactors during the first 3 yr of operation and examined the major factors that regulated nitrate removal. Bioreactor 2 was subject to river flooding, and performance was not assessed. Bioreactor 1 had average monthly nitrate removal rates of 23 to 44 g N m d in Year 1, which decreased to 1.2 to 11 g N m d in Years 2 and 3. The greater N removal rates in Year 1 and early in Year 2 were likely due to highly degradable C in the woodchips. Only late in Year 2 and in Year 3 was there a strong temperature response in the nitrate removal rate. Less than 1% of the nitrate removed was emitted as NO. Due to large tile inputs of nitrate (729-2127 kg N) at high concentrations (∼30 mg nitrate N L) in Years 2 and 3, overall removal efficiency was low (3 and 7% in Years 2 and 3, respectively). Based on a process-based bioreactor performance model, Bioreactor 1 would have needed to be 9 times as large as the current system to remove 50% of the nitrate load from this 20-ha field.


Assuntos
Reatores Biológicos , Nitratos/análise , Desnitrificação , Illinois , Temperatura , Madeira
4.
J Environ Qual ; 45(3): 873-81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27136153

RESUMO

Meta-analysis approaches were used in this first quantitative synthesis of denitrifying woodchip bioreactors. Nitrate removal across environmental and design conditions was assessed from 26 published studies, representing 57 separate bioreactor units (i.e., walls, beds, and laboratory columns). Effect size calculations weighted the data based on variance and number of measurements for each bioreactor unit. Nitrate removal rates in bed and column studies were not significantly different, but both were significantly higher than wall studies. In denitrifying beds, wood source did not significantly affect nitrate removal rates. Nitrate removal (mass per volume) was significantly lower in beds with <6-h hydraulic retention times, which argues for ensuring that bed designs incorporate sufficient time for nitrate removal. Rates significantly declined after the first year of bed operation but then stabilized. Nitrogen limitation significantly affected bed nitrate removal. Categorical and linear assessments found significant nitrate removal effects with bed temperature; a of 2.15 was quite similar to other studies. Lessons from this meta-analysis can be incorporated into bed designs, especially extending hydraulic retention times to increase nitrate removal under low temperature and high flow conditions. Additional column studies are warranted for comparative assessments, as are field-based studies for assessing in situ conditions, especially in aging beds, with careful collection and reporting of design and environmental data. Future assessment of these systems might take a holistic view, reviewing nitrate removal in conjunction with other processes, including greenhouse gas and other unfavorable by-product production.


Assuntos
Reatores Biológicos , Desnitrificação , Nitratos , Nitrogênio , Madeira
5.
J Environ Qual ; 45(1): 341-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26828190

RESUMO

Chloride is a relatively unreactive plant nutrient that has long been used as a biogeochemical tracer but also can be a pollutant causing aquatic biology impacts when concentrations are high, typically from rock salt applications used for deicing roads. Chloride inputs to watersheds are most often from atmospheric deposition, road salt, or agricultural fertilizer, although studies on agricultural watersheds with large fertilizer inputs are few. We used long-term (21 and 17 yr) chloride water quality data in two rivers of east-central Illinois to better understand chloride biogeochemistry in two agricultural watersheds (Embarras and Kaskaskia), the former with a larger urban land use and both with extensive tile drainage. During our sampling period, the average chloride concentration was 23.7 and 20.9 mg L in the Embarras and Kaskaskia Rivers, respectively. Annual fluxes of chloride were 72.5 and 61.2 kg ha yr in the Embarras and Kaskaskia watersheds, respectively. In both watersheds, fertilizer chloride was the dominant input (∼49 kg ha yr), with road salt likely the other major source (23.2 and 7.2 kg ha yr for the Embarras and Kaskaskia watersheds, respectively). Combining our monitoring data with earlier published data on the Embarras River showed an increase in chloride concentrations as potash use increased in Illinois during the 1960s and 1970s with a lag of about 2 to 6 yr to changes in potash inputs based on a multiple-regression model. In these agricultural watersheds, riverine chloride responds relatively quickly to potash fertilization as a result of tile-drainage.


Assuntos
Agricultura , Cloretos/química , Movimentos da Água , Monitoramento Ambiental , Illinois , Rios
6.
J Environ Qual ; 44(5): 1647-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436281

RESUMO

The need to mitigate nitrate export from corn and soybean fields with subsurface (tile) drainage systems, a major environmental issue in the midwestern United States, has made the efficacy of field-edge, subsurface bioreactors an active subject of research. This study of three such bioreactors located on the University of Illinois South Farms during their first 6 mo of operation (July-Dec. 2012) focused on the interactions of seasonal temperature changes and hydraulic retention times (HRTs), which were subject to experimental manipulation. Changes in nitrate, phosphate, oxygen, and dissolved organic carbon were monitored in influent and effluent to assess the benefits and the potential harmful effects of bioreactors for nearby aquatic ecosystems. On average, bioreactors reduced nitrate loads by 63%, with minimum and maximum reductions of 20 and 98% at low and high HRTs, respectively. The removal rate per unit reactor volume averaged 11.6 g NO-N m d (range, 5-30 g NO-N m d). Multiple regression models with exponential dependencies on influent water temperature and on HRT explained 73% of the variance in NO-N load reduction and 43% of the variance in its removal rate. Although concentrations of dissolved reactive phosphorus and dissolved organic carbon in the bioreactor effluent increased relative to the influent by an order of magnitude during initial tests, within 1 mo of operation they stabilized at nearly equal values.

7.
J Environ Qual ; 44(2): 368-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26023956

RESUMO

Reducing nitrate loads from corn and soybean, tile-drained, agricultural production systems in the Upper Mississippi River basin is a major challenge that has not been met. We evaluated a range of possible management practices from biophysical and social science perspectives that could reduce nitrate losses from tile-drained fields in the Upper Salt Fork and Embarras River watersheds of east-central Illinois. Long-term water quality monitoring on these watersheds showed that nitrate losses averaged 30.6 and 23.0 kg nitrate N ha yr (Embarras and Upper Salt Fork watersheds, respectively), with maximum nitrate concentrations between 14 and 18 mg N L. With a series of on-farm studies, we conducted tile monitoring to evaluate several possible nitrate reduction conservation practices. Fertilizer timing and cover crops reduced nitrate losses (30% reduction in a year with large nitrate losses), whereas drainage water management on one tile system demonstrated the problems with possible retrofit designs (water flowed laterally from the drainage water management tile to the free drainage system nearby). Tile woodchip bioreactors had good nitrate removal in 2012 (80% nitrate reduction), and wetlands had previously been shown to remove nitrate (45% reductions) in the Embarras watershed. Interviews and surveys indicated strong environmental concern and stewardship ethics among landowners and farmers, but the many financial and operational constraints that they operate under limited their willingness to adopt conservation practices that targeted nitrate reduction. Under the policy and production systems currently in place, large-scale reductions in nitrate losses from watersheds such as these in east-central Illinois will be difficult.

8.
J Environ Qual ; 44(3): 1001-10, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024280

RESUMO

Loss of nitrate from agricultural lands to surface waters is an important issue, especially in areas that are extensively tile drained. To reduce these losses, a wide range of in-field and edge-of-field practices have been proposed, including constructed wetlands. We re-evaluated constructed wetlands established in 1994 that were previously studied for their effectiveness in removing nitrate from tile drainage water. Along with this re-evaluation, we measured the production and flux of greenhouse gases (GHGs) (CO, NO, and CH). The tile inlets and outlets of two wetlands were monitored for flow and N during the 2012 and 2013 water years. In addition, seepage rates of water and nitrate under the berm and through the riparian buffer strip were measured. Greenhouse gas emissions from the wetlands were measured using floating chambers (inundated fluxes) or static chambers (terrestrial fluxes). During this 2-yr study, the wetlands removed 56% of the total inlet nitrate load, likely through denitrification in the wetland. Some additional removal of nitrate occurred in seepage water by the riparian buffer strip along each berm (6.1% of the total inlet load, for a total nitrate removal of 62%). The dominant GHG emitted from the wetlands was CO, which represented 75 and 96% of the total GHG emissions during the two water years. The flux of NO contributed between 3.7 and 13% of the total cumulative GHG flux. Emissions of NO were 3.2 and 1.3% of the total nitrate removed from wetlands A and B, respectively. These wetlands continue to remove nitrate at rates similar to those measured after construction, with relatively little GHG gas loss.

10.
J Environ Qual ; 43(4): 1467-74, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25603094

RESUMO

In east-central Illinois, fertilizer sales during the past 20 yr suggest that approximately half of the fertilizer nitrogen (N) applied to corn ( L.) occurs in the fall; however, fall fertilizer N sales were greatly reduced in 2009 as wet soil conditions restricted fall fieldwork, including fertilizer N applications. In 2010, we observed unusually low flow-weighted nitrate concentrations (approximately 40% below the long-term average) in two east-central Illinois rivers (5.7 mg N L in the Embarras River and 5.6 mg N L in the Lake Fork of the Kaskaskia River). Using long-term river nitrate data sets (1993-2012 for the Embarras and 1997-2012 for the Kaskaskia), we examined nitrate concentrations and developed regression models to estimate the association between fall fertilizer N application on riverine nitrate yields in these tile-drained watersheds. During these periods of record, annual riverine nitrate yields ranged from 8 to 57 kg N ha yr (30 kg N ha yr average) for the Embarras River and 2.6 to 59 kg N ha yr (32 kg N ha yr average) for the Kaskaskia. Multivariate linear regression relationships with the current and previous year's annual water yields, previous year's corn yield, and nine-county fall fertilizer sales accounted for 96% of the annual variation in nitrate yield in both watersheds. Running the regression models with fall fertilizer sales set to the 2009 amount suggests that the average reduction in nitrate yield (for the period of record) would be 17 and 20% for the Embarras and Kaskaskia Rivers, respectively. These data suggest that shifting fertilizer N application to the spring can be detected in watersheds as large as 481 km.

12.
Insect Sci ; 20(5): 671-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23956135

RESUMO

The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops-miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon-nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod-mediated litter decomposition and nutrient release.


Assuntos
Artrópodes/fisiologia , Biodegradação Ambiental , Biocombustíveis , Produtos Agrícolas , Animais , Artrópodes/classificação , Resíduos Sólidos
13.
J Environ Qual ; 42(1): 219-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673757

RESUMO

Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and NO emissions; second-generation cellulosic crops have the potential to reduce these N losses. We measured N losses and cycling in establishing miscanthus (), switchgrass ( L. fertilized with 56 kg N ha yr), and mixed prairie, along with a corn ( L.)-corn-soybean [ (L.) Merr.] rotation (corn fertilized at 168-202 kg N ha). Nitrous oxide emissions, soil N mineralization, mid-profile nitrate leaching, and tile flow and nitrate concentrations were measured. Perennial crops quickly reduced nitrate leaching at a 50-cm soil depth as well as concentrations and loads from the tile systems (year 1 tile nitrate concentrations of 10-15 mg N L declined significantly by year 4 in all perennial crops to <0.6 mg N L, with losses of <0.8 kg N ha yr). Nitrous oxide emissions were 2.2 to 7.7 kg N ha yr in the corn-corn-soybean rotation but were <1.0 kg N ha yr by year 4 in the perennial crops. Overall N balances (atmospheric deposition + fertilization + soybean N fixation - harvest, leaching losses, and NO emissions) were positive for corn and soybean (22 kg N ha yr) as well as switchgrass (9.7 kg N ha yr) but were -18 and -29 kg N ha yr for prairie and miscanthus, respectively. Our results demonstrate rapid tightening of the N cycle as perennial biofuel crops established on a rich Mollisol soil.


Assuntos
Produtos Agrícolas , Nitrogênio , Agricultura , Biocombustíveis , Solo , Zea mays
14.
J Environ Qual ; 40(3): 931-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21546679

RESUMO

Phosphorus (P) in rivers in the Mississippi River basin (MRB) contributes to hypoxia in the Gulf of Mexico and impairs local water quality. We analyzed the spatial pattern of P in the MRB to determine the counties with the greatest January to June P riverine yields and the most critical factors related to this P loss. Using a database of P inputs and landscape characteristics from 1997 through 2006 for each county in the MRB, we created regression models relating riverine total P (TP), dissolved reactive P (DRP), and particulate P (PP) yields for watersheds within the MRB to these factors. Riverine yields of P were estimated from the average concentration of each form of P during January to June for the 10-yr period, multiplied by the average daily flow, and then summed for the 6-mo period. The fraction of land planted in crops, human consumption of P, and precipitation were found to best predict TP yields with a spatial error regression model ( = 0.48, = 101). Dissolved reactive P yields were predicted by fertilizer P inputs, human consumption of P, and precipitation in a multiple regression model ( = 0.42, = 73), whereas PP yields were explained by crop fraction, human consumption of P, and soil bulk density in a spatial error regression model ( = 0.49, = 61). Overall, the Upper Midwest's Cornbelt region and lower Mississippi basin had the counties with the greatest P yields. These results help to point out specific areas where agricultural conservation practices that reduce losses to streams and rivers and point source P removal might limit the intensity or spatial occurrence of Gulf of Mexico hypoxia and improve local water quality.


Assuntos
Agricultura , Fósforo/análise , Movimentos da Água , Poluentes Químicos da Água/análise , Conservação dos Recursos Naturais , Monitoramento Ambiental , Fertilizantes , Atividades Humanas , Humanos , Modelos Teóricos , Chuva , Rios , Solo , Estados Unidos
15.
J Environ Qual ; 39(5): 1657-67, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21043271

RESUMO

Riverine nitrate N in the Mississippi River leads to hypoxia in the Gulf of Mexico. Several recent modeling studies estimated major N inputs and suggested source areas that could be targeted for conservation programs. We conducted a similar analysis with more recent and extensive data that demonstrates the importance of hydrology in controlling the percentage of net N inputs (NNI) exported by rivers. The average fraction of annual riverine nitrate N export/NNI ranged from 0.05 for the lower Mississippi subbasin to 0.3 for the upper Mississippi River basin and as high as 1.4 (4.2 in a wet year) for the Embarras River watershed, a mostly tile-drained basin. Intensive corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] watersheds on Mollisols had low NNI values and when combined with riverine N losses suggest a net depletion of soil organic N. We used county-level data to develop a nonlinear model ofN inputs and landscape factors that were related to winter-spring riverine nitrate yields for 153 watersheds within the basin. We found that river runoff times fertilizer N input was the major predictive term, explaining 76% of the variation in the model. Fertilizer inputs were highly correlated with fraction of land area in row crops. Tile drainage explained 17% of the spatial variation in winter-spring nitrate yield, whereas human consumption of N (i.e., sewage effluent) accounted for 7%. Net N inputs were not a good predictor of riverine nitrate N yields, nor were other N balances. We used this model to predict the expected nitrate N yield from each county in the Mississippi River basin; the greatest nitrate N yields corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio. This analysis can be used to guide decisions about where efforts to reduce nitrate N losses can be most effectively targeted to improve local water quality and reduce export to the Gulf of Mexico.


Assuntos
Água Doce/química , Nitratos/análise , Mississippi
16.
J Environ Qual ; 39(5): 1790-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21043284

RESUMO

Biomass crops are being promoted as environmentally favorable alternatives to fossil fuels or ethanol production from maize (Zea mays L.), particularly across the Corn Belt of the United States. However, there are few if any empirical studies on inorganic N leaching losses from perennial grasses that are harvested on an annual basis, nor has there been empirical evaluation of the hydrologic consequences of perennial cropping systems. Here we report on the results of 4 yr of field measurements of soil moisture and inorganic N leaching from a conventional maize-soybean [Glycine max (L.) Merr.] system and two unfertilized perennial grasses harvested in winter for biomass: Miscanthus x giganteus and switchgrass (Panicum virgatum cv. Cave-in-Rock). All crops were grown on fertile Mollisols in east-central Illinois. Inorganic N leaching was measured with ion exchange resin lysimeters placed 50 cm below the soil surface. Maize--soybean nitrate leaching averaged 40.4 kg N ha(-1) yr(-1), whereas switchgrass and Miscanthus had values of 1.4 and 3.0 kg N ha(-1) yr(-1), respectively. Soil moisture monitoring (to a depth of 90 cm) indicated that both perennial grasses dried the soil out earlier in the growing season compared with maize-soybean. Later in the growing season, soil moisture under switchgrass tended to be greater than maize-soybean or Miscanthus, whereas the soil under Miscanthus was consistently drier than under maize--soybean. Water budget calculations indicated that evapotranspiration from Miscanthus was about 104 mm yr(-1) greater than under maize-soybean, which could reduce annual drainage water flows by 32% in central Illinois. Drainage water is a primary source of surface water flows in the region, and the impact ofextensive Miscanthus production on surface water supplies and aquatic ecosystems deserves further investigation.


Assuntos
Nitrogênio/isolamento & purificação , Poaceae , Illinois , Especificidade da Espécie , Água
17.
J Environ Qual ; 38(5): 1841-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19643749

RESUMO

Simple nitrogen (N) input/output balance calculations in agricultural systems are used to evaluate performance of nutrient management; however, they generally rely on extensive assumptions that do not consider leaching, denitrification, or annual depletion of soil N. We constructed a relatively complete N mass balance for the Big Ditch watershed, an extensively tile-drained agricultural watershed in east-central Illinois. We conducted direct measurements of a wide range of N pools and fluxes for a 2-yr period, including soil N mineralization, soybean N(2) fixation, tile and river N loads, and ground water and in-stream denitrification. Fertilizer N inputs were from a survey of the watershed and yield data from county estimates that were combined with estimated protein contents to obtain grain N. By using maize fertilizer recovery and soybean N(2) fixation to estimate total grain N derived from soil, we calculated the explicit change in soil N storage each year. Overall, fertilizer N and soybean N(2) fixation dominated inputs, and total grain export dominated outputs. Precipitation during 2001 was below average (78 cm), whereas precipitation in 2002 exceeded the 30-yr average of 97 cm; monthly rainfall was above average in April, May, and June of 2002, which flooded fields and produced large tile and riverine N loads. In 2001, watershed inputs were greater than outputs, suggesting that carryover of N to the subsequent year may occur. In 2002, total inputs were less than outputs due to large leaching losses and likely substantial field denitrification. The explicit change in soil storage (67 kg N ha(-1)) offsets this balance shortfall. Although 2002 was climatically unusual, with current production trends of greater maize grain yields with less fertilizer N, soil N depletion is likely to occur in maize/soybean rotations, especially in years with above-average precipitation or extremely wet spring periods.


Assuntos
Nitrogênio/análise , Solo , Abastecimento de Água , Água/química , Illinois , Fixação de Nitrogênio , Chuva
18.
J Environ Qual ; 38(2): 607-17, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19202031

RESUMO

Sediments can be important in regulating stream water P concentrations, and this has implications for establishing nutrient standards that have not been fully investigated. We evaluated abiotic and biotic processes to better understand the role of sediments in determining stream water dissolved P concentrations. Sediment and stream water samples were collected during low discharge from 105 streams across Illinois and analyzed for equilibrium P concentration at zero release or retention (EPC(0)), P sorption characteristics, stream water P concentration, and sediment particle size. In addition, four east-central Illinois streams were repeatedly sampled to examine temporal patterns in sediment P retention and biotic processing of P. Median dissolved reactive P (DRP) and total P concentrations across the state were 0.081 and 0.168 mg L(-1), respectively. Sediment EPC(0) concentrations were related to stream water DRP concentrations (r(s) = 0.75). Sediment silt+clay (and co-correlated organic matter) was related to sorbed P (r(s) = -0.49) and the reactive sediment pool of P (r(s) = 0.76). However, for most sites this pool was small given the coarse textures present (median silt+clay was 5.7%). Repeated sampling at the four intensive sites showed little variation in EPC(0) values or alkaline phosphatase activity, suggesting overall stream conditions regulated the biotic processing. Biotic retention of P was 32% of short-term P removal. We conclude that sediments in Illinois streams are a reflection of and partially affected by stream water P concentrations through both abiotic and biotic processes. Sediments seem unlikely to alter annual stream P loads, but may affect concentrations at low discharge.


Assuntos
Água Doce/análise , Sedimentos Geológicos/análise , Fósforo/análise , Adsorção , Illinois
19.
J Environ Qual ; 38(1): 200-11, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19141810

RESUMO

Conversions of Mollisols from prairie to cropland and subsequent changes in crop production practices in the Midwestern USA have resulted in changes in soil organic matter. Few studies have used archived samples, long-term resampling of soils to a depth of 1 m, and space for time studies to document these changes. We resampled soils by depth (0-100 cm) in fields at 19 locations in central Illinois on poorly drained Mollisols that were in corn (Zea mays L.) and soybean (Glycine max L. Merr.) rotations, were tile drained, and had no known history of manure application in recent decades. Three fields were paired with virgin prairie remnants, two had grass borders that were sampled, and 16 had been previously sampled in 1901 to 1904 or 1957 under various land uses (virgin prairie, cultivation, grass cover). The soils had large amounts of C and N in the profile, with mean values of 175 [corrected] Mg C ha(-1) and 16.1 Mg N ha(-1) for the 18 cultivated fields sampled in 2001 and 2002. We confirmed a large reduction in organic C and total N pools from conversion of prairies to annual cultivation and artificial drainage and documented no change in these organic matter pools of cultivated soils during the period of synthetic fertilizer use (1957--2002). Cultivated fields had soil C and N concentrations typically 30 to 50% less than virgin prairie soils. Smaller but significant declines in C and N concentrations were found when comparing 1900s cultivated fields to concentrations in 2002, after another 100 yr of cultivation, and in comparing 1957 grass covered fields that had been converted to annual cultivation before 2002. The reduction in organic matter after cultivation of prairies occurred mostly in the top 50 cm of soil, with evidence of translocation of C and N from these upper layers to the 50- to 100-cm depth, possibly enhanced by tile drainage. For these Mollisols, declines in organic matter were likely completed by the 1950s, with organic matter pools in a steady state under the production practices in place from the late 1950s through 2002.


Assuntos
Agricultura , Carbono/análise , Nitrogênio/análise , Solo/análise , Illinois , Fatores de Tempo
20.
J Environ Qual ; 37(2): 437-47, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18268307

RESUMO

Nutrient enrichment is a frequently cited cause for biotic impairment of streams and rivers in the USA. Efforts are underway to develop nutrient standards in many states, but defensible nutrient standards require an empirical relationship between nitrogen (N) or phosphorus (P) concentrations and some criterion that relates nutrient levels to the attainment of designated uses. Algal biomass, measured as chlorophyll-a (chl-a), is a commonly proposed criterion, yet nutrient-chl-a relationships have not been well documented in Illinois at a state-wide scale. We used state-wide surveys of >100 stream and river sites to assess the applicability of chl-a as a criterion for establishing nutrient standards for Illinois. Among all sites, the median total P and total N concentrations were 0.185 and 5.6 mg L(-1), respectively, during high-discharge conditions. During low-discharge conditions, median total P concentration was 0.168 mg L(-1), with 25% of sites having a total P of > or =0.326 mg L(-1). Across the state, 90% of the sites had sestonic chl-a values of < or =35 microg L(-1), and watershed area was the best predictor of sestonic chl-a. During low discharge there was a significant correlation between sestonic chl-a and total P for those sites that had canopy cover < or =25% and total P of < or =0.2 mg L(-1). Results suggest sestonic chl-a may be an appropriate criterion for the larger rivers in Illinois but is inappropriate for small rivers and streams. Coarse substrate to support benthic chl-a occurred in <50% of the sites we examined; a study using artificial substrates did not reveal a relationship between chl-a accrual and N or P concentrations. For many streams and rivers in Illinois, nutrients may not be the limiting factor for algal biomass due to the generally high nutrient concentrations and the effects of other factors, such as substrate conditions and turbidity.


Assuntos
Clorofila/análise , Monitoramento Ambiental/métodos , Rios , Poluentes Químicos da Água/análise , Clorofila A , Illinois , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Compostos de Amônio Quaternário/análise , Dióxido de Silício/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA