RESUMO
Urinary obstruction causes injury to the renal papilla and leads to defects in the ability to concentrate urine which predisposes to progressive kidney injury. However, the regenerative capacity of the papilla after reversal of obstruction is poorly understood. To address this, we developed a mouse model of reversible urinary obstruction which is characterized by extensive papillary injury, followed by a robust regeneration response and complete histological recovery over a 3- month period. However, these mice have a pronounced defect in urinary concentrating capacity. We now show that this is due to permanent changes in the composition, organization, and transcriptional signatures of epithelial, endothelial, and interstitial cell lineages in the papilla. There are persistent inflammatory responses that are also seen in patients with renal stone disease but are associated with cell-specific adaptive responses to the increasingly hypoxic environment of the papilla after reversal of obstruction. Taken together, our analysis of a new model of reversible urinary obstruction reveals that partial repair leads to permanent changes in the structure and function of all of the major cellular compartments in the papilla that include both shared and distinct responses to different types of renal papillary injury in humans and mice. Summary: Partial repair after reversal of urinary obstruction leads to permanent changes in structure and function of all major cellular compartments in the renal papilla.
RESUMO
PURPOSE: Retinoblastoma, a curable childhood cancer, has been identified as a tracer cancer in the WHO Global Initiative for Childhood Cancer. To document the outcomes of children with retinoblastoma in South Africa, treated as per the first prospective standard national treatment guidelines for childhood cancer in South Africa. PATIENTS AND METHODS: All children diagnosed with retinoblastoma between 2012 and 2016 in five South African pediatric oncology units were treated with a standard treatment on the basis of the International Society of Pediatric Oncology-Pediatric Oncology in Developing Countries guidelines for high-income settings. Treatment included focal therapy with/without chemotherapy, or enucleation with/without chemotherapy, and orbital radiotherapy, depending on enucleated eye histology. The end point was survival at 24 months, using Kaplan-Meier curves with log-rank (Mantel-Cox) and chi-square (χ2) tests with respective P values reported. RESULTS: A total of 178 children were included in the study; 68% presented with unilateral disease. The median age was 27 months (range 0-118 months) with a male:female ratio of 1:0.75. The overall survival was 79% at 24 months with significant association with stage at diagnosis (P < .001) and older age over 2 years as opposed to younger than 2 years (P < .001). Causes of death were disease progression/relapses in 90% (34 of 38) and unknown in 2% (1 of 38), whereas treatment abandonment was 1.7% (3 of 178). CONCLUSION: Efficacy with national treatment guidelines was confirmed, and feasibility of implementing standard national childhood cancer treatment guidelines was documented, involving multidisciplinary teams in South Africa. Outcome was significantly associated with stage at diagnosis and age.
Assuntos
Guias de Prática Clínica como Assunto , Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/terapia , Retinoblastoma/mortalidade , Retinoblastoma/diagnóstico , Retinoblastoma/patologia , África do Sul/epidemiologia , Masculino , Feminino , Pré-Escolar , Lactente , Criança , Recém-Nascido , Neoplasias da Retina/terapia , Neoplasias da Retina/mortalidade , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/patologia , Resultado do Tratamento , Enucleação OcularRESUMO
The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.
Assuntos
Injúria Renal Aguda , Quinases Ciclina-Dependentes , Fatores de Transcrição SOXC , Transdução de Sinais , Animais , Masculino , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Rabdomiólise/metabolismo , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genéticaRESUMO
This guideline will provide up-to-date, evidence-based recommendations on the safe use of non-biologic DMARDs, also called conventional synthetic DMARDs (csDMARD), across the full spectrum of autoimmune rheumatic diseases. The guideline will update the guideline published in 2017 and will be expanded to include people of all ages. Updated information on the monitoring of DMARDs and vaccinations will be included. The guideline will be developed using the methods and processes described in the British Society for Rheumatology's 'Creating clinical guidelines: our protocol', updated 2023.
RESUMO
In biological systems, the activities of macromolecular complexes must sometimes be turned off. Thus, a wide variety of protein inhibitors has evolved for this purpose. These inhibitors function through diverse mechanisms, including steric blocking of crucial interactions, enzymatic modification of key residues or substrates, and perturbation of post-translational modifications1. Anti-CRISPRs-proteins that block the activity of CRISPR-Cas systems-are one of the largest groups of inhibitors described, with more than 90 families that function through diverse mechanisms2-4. Here, we characterize the anti-CRISPR AcrIF25, and we show that it inhibits the type I-F CRISPR-Cas system by pulling apart the fully assembled effector complex. AcrIF25 binds to the predominant CRISPR RNA-binding components of this complex, comprising six Cas7 subunits, and strips them from the RNA. Structural and biochemical studies indicate that AcrIF25 removes one Cas7 subunit at a time, starting at one end of the complex. Notably, this feat is achieved with no apparent enzymatic activity. To our knowledge, AcrIF25 is the first example of a protein that disassembles a large and stable macromolecular complex in the absence of an external energy source. As such, AcrIF25 establishes a paradigm for macromolecular complex inhibitors that may be used for biotechnological applications.
Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Substâncias Macromoleculares , Proteínas Virais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/química , Modelos Moleculares , Ligação Proteica , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Biotecnologia/tendências , Bacteriófagos , Proteínas Virais/metabolismoRESUMO
Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22â lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a ß-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.
Assuntos
Amidas , Lipopeptídeos , Amidas/química , Lipopeptídeos/síntese química , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Modelos Moleculares , Conformação Molecular , Compostos de Sulfidrila/química , Concentração de Íons de Hidrogênio , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacosRESUMO
Vascularization plays a critical role in organ maturation and cell-type development. Drug discovery, organ mimicry, and ultimately transplantation hinge on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcame this hurdle by combining a human induced pluripotent stem cell (iPSC) line containing an inducible ETS translocation variant 2 (ETV2) (a transcription factor playing a role in endothelial cell development) that directs endothelial differentiation in vitro, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive endothelialization with a cellular identity most closely related to human kidney endothelia. Endothelialized kidney organoids also show increased maturation of nephron structures, an associated fenestrated endothelium with de novo formation of glomerular and venous subtypes, and the emergence of drug-responsive renin expressing cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Thus, incorporation of an engineered endothelial niche into a previously published kidney organoid protocol allowed the orthogonal differentiation of endothelial and parenchymal cell types, demonstrating the potential for applicability to other basic and translational organoid studies.
RESUMO
The ongoing advancements in CRISPR-Cas technologies can significantly accelerate the preclinical development of both in vivo and ex vivo organ genome-editing therapeutics. One of the promising applications is to genetically modify donor organs prior to implantation. The implantation of optimized donor organs with long-lasting immunomodulatory capacity holds promise for reducing the need for lifelong potent whole-body immunosuppression in recipients. However, assessing genome-targeting interventions in a clinically relevant manner prior to clinical trials remains a major challenge owing to the limited modalities available. This study introduces a novel platform for testing genome editing in human lungs ex vivo, effectively simulating preimplantation genetic engineering of donor organs. We identified gene regulatory elements whose disruption via Cas nucleases led to the upregulation of the immunomodulatory gene interleukin 10 (IL-10). We combined this approach with adenoviral vector-mediated IL-10 delivery to create favorable kinetics for early (immediate postimplantation) graft immunomodulation. Using ex vivo organ machine perfusion and precision-cut tissue slice technology, we demonstrated the feasibility of evaluating CRISPR genome editing in human lungs. To overcome the assessment limitations in ex vivo perfused human organs, we conducted an in vivo rodent study and demonstrated both early gene induction and sustained editing of the lung. Collectively, our findings lay the groundwork for a first-in-human-organ study to overcome the current translational barriers of genome-targeting therapeutics.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Pulmão , Edição de Genes/métodos , Humanos , Pulmão/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Animais , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagemRESUMO
The Société Internationale d'Oncologie Pédiatrique [International Society of Paediatric Oncology] (SIOP), founded in 1969, aims to improve the lives of children and adolescents with cancer through global collaboration, education, training, research and advocacy. The annual congress provides the opportunity to share late-breaking research, clinical experiences and debate, with experts worldwide. SIOP's six Continental Branches represent their constituent members in North America, Oceania, Latin America, Africa, Europe and Asia and bring best practices and recent research findings of value to their specific patient populations. In 1990, the SIOP Board of Directors addressed the formerly predominantly European/North American society transforming into a global association by establishing a scholarship program to bring low- and middle-income country (LMIC) paediatric oncologists and nurses to SIOP meetings. A major achievement was SIOP's acceptance as a World Health Organisation (WHO) non-state actor in official relations in 2018, joining 220 non-governmental organisations, international business associations and philanthropic foundations with this privilege. SIOP supports advocacy with WHO member states and civil society to highlight the specific needs of cancer in this age-group through key programs especially supporting the WHO Global Initiative for Childhood Cancer. Sustained improvement in childhood cancer outcomes has paralleled the integration of research with care; thus, SIOP launched a Programme for Advancing Research Capacity for funding selected clinical trial groups in LMICs. SIOP supports south-south partnerships, and the principles elegantly expressed in SIOP Africa's checklist for co-branding projects, that include the prioritisation of local needs, cultivation of local expertise and commitment to equitable partnerships. SIOP now counts approximately 3,000 members from over 128 countries; 39% are from more than 60 LMICs. SIOP members have multidisciplinary expertise on all aspects of childhood cancer care working in collaboration with key stakeholders including governments, civil society organisations and funders to improve the lives of children/adolescents with cancer everywhere in all ways.
RESUMO
BACKGROUND: Pediatric-type diffuse low-grade gliomas (pLGG) harboring recurrent genetic alterations involving MYB or MYBL1 are closely related tumors. Detailed treatment and outcome data of large cohorts are still limited. This study aimed to comprehensively evaluate pLGG with these alterations to define optimal therapeutic strategies. METHODS: We retrospectively reviewed details of pLGG with MYB or MYBL1 alterations from patients treated or referred for pathologic review at St. Jude Children's Research Hospital. Tumor specimens were centrally reviewed, and clinical data were collated. RESULTS: Thirty-three patients (18 male; median age, 5 years) were identified. Two tumors had MYBL1 alterations; 31 had MYB alterations, MYB::QKI fusion being the most common (nâ =â 10, 30%). Most tumors were in the cerebral hemispheres (nâ =â 22, 67%). Two patients (6%) had metastasis at diagnosis. The median follow-up was 6.1 years. The 5-year event-free survival (EFS) rate was 81.3%â ±â 8.3%; the 5-year overall survival (OS) rate was 96.4%â ±â 4.1%. Patients receiving a near-total or gross-total resection had a 5-year EFS of 100%; those receiving a biopsy or subtotal resection had a 5-year EFS rate of 56.6%â ±â 15.2% (Pâ <â .01). No difference in EFS was observed based on location, histology, or molecular alterations. However, the tumors that progressed or metastasized may have distinct methylation profiles with evidence of activation of the MAPK and PI3K/AKT/mTOR pathways. CONCLUSIONS: pLGG with MYB/MYBL1 alterations have good outcomes. Our findings suggest that surgical resectability is a crucial determinant of EFS. Further characterization is required to identify optimal treatment strategies for progressive tumors.
Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogênicas c-myb , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Seguimentos , Glioma/patologia , Glioma/genética , Gradação de Tumores , Prognóstico , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-myb/genética , Estudos Retrospectivos , Taxa de Sobrevida , Transativadores/genéticaRESUMO
Bacteria have evolved diverse antiviral defence mechanisms to protect themselves against phage infection. Phages integrated into bacterial chromosomes, known as prophages, also encode defences that protect the bacterial hosts in which they reside. Here, we identify a type of anti-phage defence that interferes with the virion assembly pathway of invading phages. The protein that mediates this defence, which we call Tab (for 'Tail assembly blocker'), is constitutively expressed from a Pseudomonas aeruginosa prophage. Tab allows the invading phage replication cycle to proceed, but blocks assembly of the phage tail, thus preventing formation of infectious virions. While the infected cell dies through the activity of the replicating phage lysis proteins, there is no release of infectious phage progeny, and the bacterial community is thereby protected from a phage epidemic. Prophages expressing Tab are not inhibited during their own lytic cycle because they express a counter-defence protein that interferes with Tab function. Thus, our work reveals an anti-phage defence that operates by blocking virion assembly, thereby both preventing formation of phage progeny and allowing destruction of the infected cell due to expression of phage lysis genes.
Assuntos
Bacteriófagos , Infecções por Pseudomonas , Humanos , Bacteriófagos/genética , Prófagos/genética , Infecções por Pseudomonas/microbiologia , Vírion/genéticaRESUMO
The brevicidines represent a novel class of nonribosomal antimicrobial peptides that possess remarkable potency and selectivity toward highly problematic and resistant Gram-negative pathogenic bacteria. A recently discovered member of the brevicidine family, coined brevicidine B (2), comprises a single amino acid substitution (from d-Tyr2 to d-Phe2) in the amino acid sequence of the linear moiety of brevicidine (1) and was reported to exhibit broader antimicrobial activity against both Gram-negative (MIC = 2-4 µgmL-1) and Gram-positive (MIC = 2-8 µgmL-1) pathogens. Encouraged by this, we herein report the first total synthesis of the proposed structure of brevicidine B (2), building on our previously reported synthetic strategy to access brevicidine (1). In agreement with the original isolation paper, pleasingly, synthetic 2 demonstrated antimicrobial activity toward Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae (MIC = 4-8 µgmL-1). Interestingly, however, synthetic 2 was inactive toward all of the tested Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus strains. Substitution of d-Phe2 with its enantiomer, and other hydrophobic residues, yields analogues that were either inactive or only exhibited activity toward Gram-negative strains. The striking difference in the biological activity of our synthetic 2 compared to the reported natural compound warrants the re-evaluation of the original natural product for purity or possible differences in relative configuration. Finally, the evaluation of synthetic 1 and 2 in a human kidney organoid model of nephrotoxicity revealed substantial toxicity of both compounds, although 1 was less toxic than 2 and polymyxin B. These results indicate that modification to position 2 may afford a strategy to mitigate the nephrotoxicity of brevicidine.
Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Humanos , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/síntese química , Klebsiella pneumoniae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/químicaRESUMO
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). Mitochondrial dysfunction in renal tubules, occurring early in the disease, is linked to the development of DKD, although the underlying pathways remain unclear. Here, we examine diabetic human and mouse kidneys, and HK-2 cells exposed to high glucose, to show that high glucose disrupts mitochondria-associated endoplasmic reticulum membrane (MAM) and causes mitochondrial fragmentation. We find that high glucose conditions increase mitogen-activated protein kinase 1(MAPK1), a member of the MAP kinase signal transduction pathway, which in turn lowers the level of phosphofurin acidic cluster sorting protein 2 (PACS-2), a key component of MAM that tethers mitochondria to the ER. MAPK1-induced disruption of MAM leads to mitochondrial fragmentation but this can be rescued in HK-2 cells by increasing PACS-2 levels. Functional studies in diabetic mice show that inhibition of MAPK1 increases PACS-2 and protects against the loss of MAM and the mitochondrial fragmentation. Taken together, these results identify the MAPK1-PACS-2 axis as a key pathway to therapeutically target as well as provide new insights into the pathogenesis of DKD.
Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Doenças Mitocondriais , Camundongos , Humanos , Animais , Diabetes Mellitus Experimental/complicações , Proteína Quinase 1 Ativada por Mitógeno , GlucoseRESUMO
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development but, in the adult kidney, is restricted to occasional collecting duct epithelial cells. We now show that there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI) and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protected against experimental AKI but was unexpectedly associated with increased expression of the PTEC injury marker Kim1. However, the protective effects of inhibiting PTEC RAR signaling were associated with increased Kim1-dependent apoptotic cell clearance, or efferocytosis, and this was associated with dedifferentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate the functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI.
Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Camundongos , Animais , Humanos , Túbulos Renais Proximais/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , MamíferosRESUMO
Kidney organoids differentiated from human pluripotent stem cells (hPSC) have advanced the study of kidney diseases by providing an in vitro system that outperforms traditional monolayer cell culture and complements animal models. This chapter describes a simple two-stage protocol that generates kidney organoids in suspension culture in less than 2 weeks. In the first stage, hPSC colonies are differentiated into nephrogenic mesoderm. In the second stage of the protocol, renal cell lineages develop and self-organize into kidney organoids that contain fetal-like nephrons with proximal and distal tubule segmentation. A single assay generates up to 1000 organoids, thereby providing a rapid and cost-efficient method for the bulk production of human kidney tissue. Applications include the study of fetal kidney development, genetic disease modelling, nephrotoxicity screening, and drug development.
Assuntos
Rim , Células-Tronco Pluripotentes , Animais , Humanos , Néfrons , Técnicas de Cultura de Células/métodos , Diferenciação Celular , OrganoidesRESUMO
Vascularization plays a critical role in organ maturation and cell type development. Drug discovery, organ mimicry, and ultimately transplantation in a clinical setting thereby hinges on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcome this hurdle by combining an inducible ETS translocation variant 2 (ETV2) human induced pluripotent stem cell (iPSC) line, which directs endothelial fate, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive vascularization by endothelial cells with an identity most closely related to endogenous kidney endothelia. Vascularized organoids also show increased maturation of nephron structures including more mature podocytes with improved marker expression, foot process interdigitation, an associated fenestrated endothelium, and the presence of renin+ cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Furthermore, this approach is orthogonal to native tissue differentiation paths, hence readily adaptable to other organoid systems and thus has the potential for a broad impact on basic and translational organoid studies.
RESUMO
BACKGROUND: Inflammatory injury in the donor lung remains a persistent challenge in lung transplantation that limits donor organ usage and post-transplant outcomes. Inducing immunomodulatory capacity in donor organs could address this unsolved clinical problem. We sought to apply clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) technologies to the donor lung to fine-tune immunomodulatory gene expression, exploring for the first time the therapeutic use of CRISPR-mediated transcriptional activation in the whole donor lung. METHODS: We explored the feasibility of CRISPR-mediated transcriptional upregulation of interleukin 10 (IL-10), a key immunomodulatory cytokine, in vitro and in vivo. We first evaluated the potency, titratability, and multiplexibility of the gene activation in rat and human cell lines. Next, in vivo CRISPR-mediated IL-10 activation was characterized in rat lungs. Finally, the IL-10-activated donor lungs were transplanted into recipient rats to assess the feasibility in a transplant setting. RESULTS: The targeted transcriptional activation induced robust and titrable IL-10 upregulation in vitro. The combination of guide RNAs also facilitated multiplex gene modulation, that is, simultaneous activation of IL-10 and IL1 receptor antagonist. In vivo profiling demonstrated that adenoviral delivery of Cas9-based activators to the lung was feasible with the use of immunosuppression, which is routinely applied to organ transplant recipients. The transcriptionally modulated donor lungs retained IL-10 upregulation in isogeneic and allogeneic recipients. CONCLUSIONS: Our findings highlight the potential of CRISPR epigenome editing to improve lung transplant outcomes by creating a more favorable immunomodulatory environment in the donor organ, a paradigm that may be extendable to other organ transplants.
Assuntos
Edição de Genes , Interleucina-10 , Humanos , Animais , Ratos , Interleucina-10/genética , Linhagem Celular , Pulmão , ImunomodulaçãoRESUMO
Bacteria in the genus Streptomyces are found ubiquitously in nature and are known for the number and diversity of specialized metabolites they produce, as well as their complex developmental lifecycle. Studies of the viruses that prey on Streptomyces, known as phages, have aided the development of tools for genetic manipulation of these bacteria, as well as contributing to a deeper understanding of Streptomyces and their behaviours in the environment. Here, we present the genomic and biological characterization of twelve Streptomyces phages. Genome analyses reveal that these phages are closely related genetically, while experimental approaches show that they have broad overlapping host ranges, infect early in the Streptomyces lifecycle, and induce secondary metabolite production and sporulation in some Streptomyces species. This work expands the group of characterized Streptomyces phages and improves our understanding of Streptomyces phage-host dynamics.