Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Anal Chem ; 95(50): 18557-18563, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38050376

RESUMO

Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.


Assuntos
Lipídeos , Espectrometria de Massas por Ionização por Electrospray , Camundongos , Humanos , Animais , Espectrometria de Massas , Isomerismo , Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
2.
Trials ; 24(1): 113, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36793105

RESUMO

BACKGROUND: Among all racial/ethnic groups, people who identify as African American/Blacks have the second highest colorectal cancer (CRC) incidence in the USA. This disparity may exist because African American/Blacks, compared to other racial/ethnic groups, have a higher prevalence of risk factors for CRC, including obesity, low fiber consumption, and higher intakes of fat and animal protein. One unexplored, underlying mechanism of this relationship is the bile acid-gut microbiome axis. High saturated fat, low fiber diets, and obesity lead to increases in tumor promoting secondary bile acids. Diets high in fiber, such as a Mediterranean diet, and intentional weight loss may reduce CRC risk by modulating the bile acid-gut microbiome axis. The purpose of this study is to test the impact of a Mediterranean diet alone, weight loss alone, or both, compared to typical diet controls on the bile acid-gut microbiome axis and CRC risk factors among African American/Blacks with obesity. Because weight loss or a Mediterranean diet alone can reduce CRC risk, we hypothesize that weight loss plus a Mediterranean diet will reduce CRC risk the most. METHODS: This randomized controlled lifestyle intervention will randomize 192 African American/Blacks with obesity, aged 45-75 years to one of four arms: Mediterranean diet, weight loss, weight loss plus Mediterranean diet, or typical diet controls, for 6 months (48 per arm). Data will be collected at baseline, mid-study, and study end. Primary outcomes include total circulating and fecal bile acids, taurine-conjugated bile acids, and deoxycholic acid. Secondary outcomes include body weight, body composition, dietary change, physical activity, metabolic risk, circulating cytokines, gut microbial community structure and composition, fecal short-chain fatty acids, and expression levels of genes from exfoliated intestinal cells linked to carcinogenesis. DISCUSSION: This study will be the first randomized controlled trial to examine the effects of a Mediterranean diet, weight loss, or both on bile acid metabolism, the gut microbiome, and intestinal epithelial genes associated with carcinogenesis. This approach to CRC risk reduction may be especially important among African American/Blacks given their higher risk factor profile and increased CRC incidence. TRIAL REGISTRATION: ClinicalTrials.gov NCT04753359 . Registered on 15 February 2021.


Assuntos
Neoplasias Colorretais , Dieta Mediterrânea , Microbioma Gastrointestinal , Humanos , Ácidos e Sais Biliares , Negro ou Afro-Americano , Neoplasias Colorretais/metabolismo , Obesidade/diagnóstico , Obesidade/terapia , Obesidade/complicações , Fatores de Risco , Redução de Peso
3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769029

RESUMO

Coffee is one of the most widely consumed beverages worldwide, and epidemiology studies associate higher coffee consumption with decreased rates of mortality and decreased rates of neurological and metabolic diseases, including Parkinson's disease and type 2 diabetes. In addition, there is also evidence that higher coffee consumption is associated with lower rates of colon and rectal cancer, as well as breast, endometrial, and other cancers, although for some of these cancers, the results are conflicting. These studies reflect the chemopreventive effects of coffee; there is also evidence that coffee consumption may be therapeutic for some forms of breast and colon cancer, and this needs to be further investigated. The mechanisms associated with the chemopreventive or chemotherapeutic effects of over 1000 individual compounds in roasted coffee are complex and may vary with different diseases. Some of these mechanisms may be related to nuclear factor erythroid 2 (Nrf2)-regulated pathways that target oxidative stress or pathways that induce reactive oxygen species to kill diseased cells (primarily therapeutic). There is evidence for the involvement of receptors which include the aryl hydrocarbon receptor (AhR) and orphan nuclear receptor 4A1 (NR4A1), as well as contributions from epigenetic pathways and the gut microbiome. Further elucidation of the mechanisms will facilitate the potential future clinical applications of coffee extracts for treating cancer and other inflammatory diseases.


Assuntos
Anticarcinógenos , Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Diabetes Mellitus Tipo 2/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Estresse Oxidativo , Espécies Reativas de Oxigênio , Café
4.
Stat Biosci ; 15(3): 669-691, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38179127

RESUMO

The advances of modern sequencing techniques have generated an unprecedented amount of multi-omics data which provide great opportunities to quantitatively explore functional genomes from different but complementary perspectives. However, distinct modalities/sequencing technologies generate diverse types of data which greatly complicate statistical modeling because uniquely optimized methods are required for handling each type of data. In this paper, we propose a unified framework for Bayesian nonparametric matrix factorization that infers overlapping bi-clusters for multi-omics data. The proposed method adaptively discretizes different types of observations into common latent states on which cluster structures are built hierarchically. The proposed Bayesian nonparametric method is able to automatically determine the number of clusters. We demonstrate the utility of the proposed method using simulation studies and applications to a single-cell RNA-sequencing dataset, a combination of single-cell RNA-sequencing and single-cell ATAC-sequencing dataset, a bulk RNA-sequencing dataset, and a DNA methylation dataset which reveal several interesting findings that are consistent with biological literature.

5.
Receptors (Basel) ; 2(1): 93-99, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38651159

RESUMO

The aryl hydrocarbon receptor (AhR) is overexpressed in many tumor types and exhibits tumor-specific tumor promoter and tumor suppressor-like activity. In colon cancer, most but not all studies suggest that the AhR exhibits tumor suppressor activity which is enhanced by AhR ligands acting as agonists. Our studies investigated the role of the AhR in colon tumorigenesis using wild-type and AhR-knockout mice, the inflammation model of colon tumorigenesis using mice treated with azoxymethane (AOM)/dextran sodium sulfate (DSS) and APCS580/+; KrasG12D/+ mice all of which form intestinal tumors. The effects of tissue-specific AhR loss in the intestine of the tumor-forming mice on colonic stem cells, organoid-initiating capacity, colon tumor formation and mechanisms of AhR-mediated effects were investigated. Loss of AhR enhanced stem cell and tumor growth and in the AOM/DSS model AhR-dependent suppression of FOXM1 and downstream genes was important for AhR-dependent anticancer activity. Furthermore, the effectiveness of interleukin-22 (IL22) in colonic epithelial cells was also dependent on AhR expression. IL22 induced phosphorylation of STAT3, inhibited colonic organoid growth, promoted colonic cell proliferation in vivo and enhanced DNA repair in AOM/DSS-induced tumors. In this mouse model, the AhR suppressed SOCS3 expression and enhanced IL22-mediated activation of STAT3, whereas the loss of the AhR increased levels of SOCS3 which in turn inhibited IL22-induced STAT3 activation. In the APCS580/+; KrasG12D/+ mouse model, the loss of the AhR enhanced Wnt signaling and colon carcinogenesis. Results in both mouse models of colon carcinogenesis were complemented by single cell transcriptomics on colonic intestinal crypts which also showed that AhR deletion promoted expression of FOXM1-regulated genes in multiple colonic cell subtypes. These results support the role of the AhR as a tumor suppressor-like gene in the colon.

6.
Chem Biol Interact ; 365: 110067, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35917944

RESUMO

Unsubstituted flavone induced CYP1A1, CYP1B1 and UGT1A1 gene expression in Caco2 cells and was characterized as an aryl hydrocarbon receptor (AhR) agonist. The structure-activity relationships among 15 mono- and dihydroxyflavones showed that addition of one or two hydroxyl groups resulted in active (e.g.: 5- and 6- mono- and 5,6-dihydroxyflavones) and inactive (e.g.: 7-mono, 7,4' and 6,4'-dihydroxyflavones) AhR ligands. Ligand docking studies of flavone, mono- and dihydroxyflavones to the human AhR resulted in similar docking scores that varied from -3.48 to -4.58 kcal/mol and these values did not distinguish between AhR-active and AhR-inactive mono- and dihydroxyflavones. The AhR-inactive flavones were subsequently investigated as AhR antagonists by determining their activities as inhibitors of TCDD-induced expression of CYP1A1, CYP1AA2 and UGT 1A1 gene expression in Caco2 cells. Initial studies with 7,4'-dihydroxyflavone showed that this compound was an AhR antagonist in Caco2 cells and resembled the activity of the classical AhR antagonist CH223191. With few exceptions most of the remaining AhR-inactive compounds in terms of inducing AhR responsive genes were also AhR antagonists. Thus, based on modeling studies, mono- and dihydroxyflavones bind with similar affinities to the AhR and exhibit AhR agonist or antagonist activities, however, the structural requirements (substitution patterns) for predicting these opposing activities were not apparent and could only be determined using bioassays.


Assuntos
Flavonas , Receptores de Hidrocarboneto Arílico , Células CACO-2 , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Flavonas/farmacologia , Flavonoides/farmacologia , Humanos , Ligantes , Relação Estrutura-Atividade
7.
Poult Sci ; 101(3): 101642, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35016046

RESUMO

Intestinal organoids (IO), known as "mini-guts", derived from intestinal crypts, are self-organizing three-dimensional (3D) multicellular ex vivo models that recapitulate intestine epithelial structure and function and have been widely used for studying intestinal physiology, pathophysiology, molecular mechanisms of host-pathogen interactions, and intestinal disease in mammals. However, studies on avian IO are limited and the development of long-term cultures of IO model for poultry research is lacking. Therefore, the objectives of this study were to generate crypt-derived organoids from chicken intestines and to optimize conditions for cell growth and enrichments, passages, and cryopreservation. Crypts were collected from the small intestines of birds at embryonic d-19 and ceca from layer and broiler chickens with ages ranging from d 1 to 20 wk, embedded in a basement membrane matrix, and cultured with organoid growth media (OGM) prepared in house. The crypt-derived organoids were successfully grown and propagated to form 3D spheres like structures that were cultured for up to 3 wk. Organoids were formed on d one, budding appeared on d 3, and robust budding was observed on d 7 and beyond. For cryopreservation, dissociated organoids were resuspended in a freezing medium. The characteristics of IO upon extended passages and freeze-thaw cycles were analyzed using reverse transcription (RT)-PCR, immunoblotting, and live cell imaging. Immunoblotting and RT-PCR using E-cadherin (the marker for epithelial cells), leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5, the marker for stem cells), chromogranin A (the marker for enteroendocrine cells), lysozyme (the marker for Paneth cells), and mucin (the biomarker for goblet cells) confirmed that IO were composed of heterogeneous cell populations, including epithelial cells, stem cells, enteroendocrine cells, Paneth cells, and goblet cells. Furthermore, OGM supplemented with both valproic acid and CHIR99021, a glycogen synthase kinase 3ß inhibitor and a histone deacetylase inhibitor, increased the size of the avian IO (P < 0.001). To the best of our knowledge, this is the first comprehensive report for establishing long-term, organoid culture models from small intestines and ceca of layer and broiler chickens. This model will facilitate elucidation of the mechanisms impacting host-pathogen interactions, eventually leading to the discovery of pathogen intervention strategies in poultry.


Assuntos
Mucosa Intestinal , Organoides , Animais , Diferenciação Celular/fisiologia , Galinhas , Mucosa Intestinal/metabolismo , Intestinos , Organoides/fisiologia , Celulas de Paneth
8.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G93-G106, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755534

RESUMO

IL22 signaling plays an important role in maintaining gastrointestinal epithelial barrier function, cell proliferation, and protection of intestinal stem cells from genotoxicants. Emerging studies indicate that the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, promotes production of IL22 in gut immune cells. However, it remains to be determined if AhR signaling can also affect the responsiveness of colonic epithelial cells to IL22. Here, we show that IL22 treatment induces the phosphorylation of STAT3, inhibits colonic organoid growth, and promotes colonic cell proliferation in vivo. Notably, intestinal cell-specific AhR knockout (KO) reduces responsiveness to IL22 and compromises DNA damage response after exposure to carcinogen, in part due to the enhancement of suppressor of cytokine signaling 3 (SOCS3) expression. Deletion of SOCS3 increases levels of pSTAT3 in AhR KO organoids, and phenocopies the effects of IL22 treatment on wild-type (WT) organoid growth. In addition, pSTAT3 levels are inversely associated with increased azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumorigenesis in AhR KO mice. These findings indicate that AhR function is required for optimal IL22 signaling in colonic epithelial cells and provide rationale for targeting AhR as a means of reducing colon cancer risk.NEW & NOTEWORTHY AhR is a key transcription factor controlling expression of IL22 in gut immune cells. In this study, we show for the first time that AhR signaling also regulates IL22 response in colonic epithelial cells by modulating SOCS3 expression.


Assuntos
Colo/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Interleucinas/farmacologia , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Fator de Transcrição STAT3/efeitos dos fármacos , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Colo/metabolismo , Neoplasias do Colo/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Camundongos Knockout , Organoides/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ativação Transcricional/fisiologia , Interleucina 22
9.
Cancer Prev Res (Phila) ; 15(1): 17-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34815312

RESUMO

Despite recent progress recognizing the importance of aryl hydrocarbon receptor (Ahr)-dependent signaling in suppressing colon tumorigenesis, its role in regulating colonic crypt homeostasis remains unclear. To assess the effects of Ahr on intestinal epithelial cell heterogeneity and functional phenotypes, we utilized single-cell transcriptomics and advanced analytic strategies to generate a high-quality atlas for colonic intestinal crypts from wild-type and intestinal-specific Ahr knockout mice. Here we observed the promotive effects of Ahr deletion on Foxm1-regulated genes in crypt-associated canonical epithelial cell types and subtypes of goblet cells and deep crypt-secretory cells. We also show that intestinal Ahr deletion elevated single-cell entropy (a measure of differentiation potency or cell stemness) and RNA velocity length (a measure of the rate of cell differentiation) in noncycling and cycling Lgr5+ stem cells. In general, intercellular signaling cross-talk via soluble and membrane-bound factors was perturbed in Ahr-null colonocytes. Taken together, our single-cell RNA sequencing analyses provide new evidence of the molecular function of Ahr in modulating putative stem cell driver genes, cell potency lineage decisions, and cell-cell communication in vivo. PREVENTION RELEVANCE: Our mouse single-cell RNA sequencing analyses provide new evidence of the molecular function of Ahr in modulating colonic stemness and cell-cell communication in vivo. From a cancer prevention perspective, Ahr should be considered a therapeutic target to recalibrate remodeling of the intestinal stem cell niche.


Assuntos
Colo , Receptores de Hidrocarboneto Arílico , Animais , Diferenciação Celular , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Análise de Sequência de RNA , Análise de Célula Única
10.
BMC Pediatr ; 21(1): 374, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465311

RESUMO

BACKGROUND: Overweight, obesity, and associated comorbidities are a pressing global issue among children of all ages, particularly among low-income populations. Rapid weight gain (RWG) in the first 6 months of infancy contributes to childhood obesity. Suboptimal sleep-wake patterns and gut microbiota (GM) have also been associated with childhood obesity, but little is known about their influences on early infant RWG. Sleep may alter the GM and infant metabolism, and ultimately impact obesity; however, data on the interaction between sleep-wake patterns and GM development on infant growth are scarce. In this study, we aim to investigate associations of infant sleep-wake patterns and GM development with RWG at 6 months and weight gain at 12 months. We also aim to evaluate whether temporal interactions exist between infant sleep-wake patterns and GM, and if these relations influence RWG. METHODS: The Snuggle Bug/ Acurrucadito study is an observational, longitudinal study investigating whether 24-h, actigraphy-assessed, sleep-wake patterns and GM development are associated with RWG among infants in their first year. Based on the Ecological Model of Growth, we propose a novel conceptual framework to incorporate sleep-wake patterns and the GM as metabolic contributors for RWG in the context of maternal-infant interactions, and familial and socio-physical environments. In total, 192 mother-infant pairs will be recruited, and sleep-wake patterns and GM development assessed at 3 and 8 weeks, and 3, 6, 9, and 12 months postpartum. Covariates including maternal and child characteristics, family and environmental factors, feeding practices and dietary intake of infants and mothers, and stool-derived metabolome and exfoliome data will be assessed. The study will apply machine learning techniques combined with logistic time-varying effect models to capture infant growth and aid in elucidating the dynamic associations between study variables and RWG. DISCUSSION: Repeated, valid, and objective assessment at clinically and developmentally meaningful intervals will provide robust measures of longitudinal sleep, GM, and growth. Project findings will provide evidence for future interventions to prevent RWG in infancy and subsequent obesity. The work also may spur the development of evidence-based guidelines to address modifiable factors that influence sleep-wake and GM development and prevent childhood obesity.


Assuntos
Microbioma Gastrointestinal , Obesidade Infantil , Criança , Feminino , Humanos , Lactente , Estudos Longitudinais , Obesidade Infantil/etiologia , Fatores de Risco , Sono , Aumento de Peso
11.
Mol Nutr Food Res ; 65(20): e2100539, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34406707

RESUMO

SCOPE: This study investigates the mechanism of action and functional effects of coffee extracts in colonic cells, on intestinal stem cell growth, and inhibition of dextran sodium sulfate (DSS)-induced intestinal barrier damage in mice. METHODS AND RESULTS: Aqueous coffee extracts induced Ah receptor (AhR) -responsive CYP1A1, CYP1B1, and UGT1A1 gene expression in colon-derived Caco2 and YAMC cells. Tissue-specific AhR knockout (AhRf/f x Lgr5-GFP-CreERT2 x Villin-Cre), wild-type (Lgr5-CreERT2 x Villin-Cre) mice are sources of stem cell enriched organoids and both coffee extracts and norharman, an AhR-active component of these extracts inhibited stem cell growth. Coffee extracts also inhibit DSS-induced damage to intestinal barrier function and DSS-induced mucosal inflammatory genes such as IL-6 and TGF-ß1 in wild-type (AhR+/+ ) but not AhR-/- mice. In contrast, coffee does not exhibit protective effects in intestinal-specific AhR knockout mice. Coffee extracts also enhanced overall formation of AhR-active microbial metabolites. CONCLUSIONS: In colon-derived cells and in the mouse intestine, coffee induced several AhR-dependent responses including gene expression, inhibition of intestinal stem cell-enriched organoid growth, and inhibition of DSS-induced intestinal barrier damage. We conclude that the anti-inflammatory effects of coffee in the intestine are due, in part, to activation of AhR signaling.


Assuntos
Café , Colo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Células CACO-2 , Colo/metabolismo , Citocromo P-450 CYP1A1/fisiologia , Citocromo P-450 CYP1B1/fisiologia , Sulfato de Dextrana/toxicidade , Feminino , Humanos , Masculino , Camundongos
12.
Am J Physiol Gastrointest Liver Physiol ; 321(1): G41-G51, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949197

RESUMO

Assessing intestinal development and host-microbe interactions in healthy human infants requires noninvasive approaches. We have shown that the transcriptome of exfoliated epithelial cells in feces can differentiate breast-fed and formula-fed infants and term and preterm infants. However, it is not fully understood which regions of the intestine that the exfoliated cells represent. Herein, the transcriptional profiles of exfoliated cells with that of the ileal and colonic mucosa were compared. We hypothesized that exfoliated cells in the distal colon would reflect mucosal signatures of more proximal regions of the gut. Two-day-old piglets (n = 8) were fed formulas for 20 days. Luminal contents and mucosa were collected from ileum (IL), ascending colon (AC), and descending (DC) colon, and mRNA was extracted and sequenced. On average, ∼13,000 genes were mapped in mucosal tissues and ∼10,000 in luminal contents. The intersection of detected genes between three mucosa regions and DC exfoliome indicated an approximately 99% overlap. On average, 49% of the genes in IL, AC, and DC mucosa were present in the AC and DC exfoliome. Genes expressed predominantly in specific anatomic sites (stomach, pancreas, small intestine, colon) were detectable in exfoliated cells. In addition, gene markers for all intestinal epithelial cell types were expressed in the exfoliome representing a diverse array of cell types arising from both the small and large intestine. Genes were mapped to nutrient absorption and transport and immune function. Thus, the exfoliome represents a robust reservoir of information in which to assess intestinal development and responses to dietary interventions.NEW & NOTEWORTHY The transcriptome of exfoliated epithelial cells in stool contain gene signatures from both small and large intestinal mucosa affording a noninvasive approach to assess gut health and function.


Assuntos
Células Epiteliais/metabolismo , Intestino Grosso/metabolismo , Intestino Delgado/metabolismo , Transcriptoma/fisiologia , Animais , Colo/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Mucosa Intestinal/metabolismo , Suínos
13.
Mol Cancer Res ; 19(5): 771-783, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33495399

RESUMO

The mutational genetic landscape of colorectal cancer has been extensively characterized; however, the ability of "cooperation response genes" to modulate the function of cancer "driver" genes remains largely unknown. In this study, we investigate the role of aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, in modulating oncogenic cues in the colon. We show that intestinal epithelial cell-targeted AhR knockout (KO) promotes the expansion and clonogenic capacity of colonic stem/progenitor cells harboring ApcS580/+; KrasG12D/+ mutations by upregulating Wnt signaling. The loss of AhR in the gut epithelium increased cell proliferation, reduced mouse survival rate, and promoted cecum and colon tumorigenesis in mice. Mechanistically, the antagonism of Wnt signaling induced by Lgr5 haploinsufficiency attenuated the effects of AhR KO on cecum and colon tumorigenesis. IMPLICATIONS: Our findings reveal that AhR signaling plays a protective role in genetically induced colon tumorigenesis at least by suppressing Wnt signaling and provides rationale for the AhR as a therapeutic target for cancer prevention and treatment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias do Colo/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese , Feminino , Masculino , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Hidrocarboneto Arílico/genética , Via de Sinalização Wnt
14.
Toxicol Sci ; 180(1): 148-159, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33263770

RESUMO

Hydroxylated chalcones are phytochemicals which are biosynthetic precursors of flavonoids and their 1,3-diaryl-prop-2-en-1-one structure is used as a scaffold for drug development. In this study, the structure-dependent activation of aryl hydrocarbon receptor (AhR)-responsive CYP1A1, CYP1B1, and UGT1A1 genes was investigated in Caco2 colon cancer cells and in non-transformed young adult mouse colonocytes (YAMC) cells. The effects of a series of di- and trihydroxychalcones as AhR agonists was structure dependent with maximal induction of CYP1A1, CYP1B1, and UGT1A1 in Caco2 cells observed for compounds containing 2,2'-dihydroxy substituents and this included 2,2'-dihydroxy-, 2,2',4'-trihydroxy-, and 2,2',5'-trihydroxychalcones. In contrast, 2',4,5'-, 2'3',4'-, 2',4,4'-trihydroxy, and 2',3-, 2',4-, 2',4'-, and 2',5-dihydroxychalcones exhibited low to non-detectable AhR activity in Caco2 cells. In addition, all of the hydroxychalcones exhibited minimal to non-detectable activity in YAMC cells, whereas 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced CYP1A1, CYP1B1, and UGT1A1 in Caco2 and YAMC cells. The activity of AhR-active chalcones was confirmed by determining their effects in AhR-deficient Caco2 cells. In addition, 2,2'-dihydroxychalcone induced CYP1A1 protein and formation of an AhR-DNA complex in an in vitro assay. Simulation and modeling studies of hydroxylated chalcones confirmed their interactions with the AhR ligand-binding domain and were consistent with their structure-dependent activity as AhR ligands. Thus, this study identifies hydroxylated chalcones as AhR agonists with potential for these phytochemicals to impact AhR-mediated colonic pathways.


Assuntos
Chalconas , Dibenzodioxinas Policloradas , Animais , Células CACO-2 , Chalconas/toxicidade , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Humanos , Camundongos , Ligação Proteica , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
15.
Microorganisms ; 8(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353204

RESUMO

Gut microbiota and the host exist in a mutualistic relationship, with the functional composition of the microbiota strongly influencing the health and well-being of the host. In addition to the standard differential expression analysis of host genes to assess the complex cross-talk between environment (diet), microbiome, and host intestinal physiology, data-driven integrative approaches are needed to identify potential biomarkers of both host genes and microbial communities that characterize these interactions. Our findings demonstrate that the complementary application of univariate differential gene expression analysis and multivariate approaches such as sparse Canonical Correlation Analysis (sCCA) and sparse Principal Components Analysis (sPCA) can be used to integrate data from both the healthy infant gut microbial community and host transcriptome (exfoliome) using stool derived exfoliated cells shed from the gut. These approaches reveal host genes and microbial functional categories related to the feeding phenotype of the infants. Our findings also confirm that combinatorial noninvasive -omic approaches provide an integrative genomics-based perspective of neonatal host-gut microbiome interactions.

16.
EMBO J ; 39(19): e104319, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915464

RESUMO

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that senses xenobiotics, diet, and gut microbial-derived metabolites, is increasingly recognized as a key regulator of intestinal biology. However, its effects on the function of colonic stem and progenitor cells remain largely unexplored. Here, we observed that inducible deletion of AhR in Lgr5+ stem cells increases the percentage of colonic stem cells and enhances organoid initiating capacity and growth of sorted stem and progenitor cells, while AhR activation has the opposite effect. Moreover, intestinal-specific AhR knockout increases basal stem cell and crypt injury-induced cell proliferation and promotes colon tumorigenesis in a preclinical colitis-associated tumor model by upregulating FoxM1 signaling. Mechanistically, AhR transcriptionally suppresses FoxM1 expression. Activation of AhR in human organoids recapitulates phenotypes observed in mice, such as reduction in the percentage of colonic stem cells, promotion of stem cell differentiation, and attenuation of FoxM1 signaling. These findings indicate that the AhR-FoxM1 axis, at least in part, mediates colonic stem/progenitor cell behavior.


Assuntos
Colo/metabolismo , Proteína Forkhead Box M1/metabolismo , Receptores de Hidrocarboneto Arílico/deficiência , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Feminino , Proteína Forkhead Box M1/genética , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Hidrocarboneto Arílico/metabolismo
17.
PLoS One ; 15(3): e0229797, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32176710

RESUMO

Evaluating the health and function of the gastrointestinal tract can be challenging in all species, but is especially difficult in horses due to their size and length of the gastrointestinal (GI) tract. Isolation of mRNA of cells exfoliated from the GI mucosa into feces (i.e., the exfoliome) offers a novel means of non-invasively examining the gene expression profile of the GI mucosa. This approach has been utilized in people with colorectal cancer. Moreover, we have utilized this approach in a murine model of GI inflammation and demonstrated that the exfoliome reflects the tissue transcriptome. The ability of the equine exfoliome to provide non-invasive information regarding the health and function of the GI tract is not known. The objective of this study was to characterize the gene expression profile found in exfoliated intestinal epithelial cells from normal horses and compare the exfoliome data with the tissue mucosal transcriptome. Mucosal samples were collected from standardized locations along the GI tract (i.e. ileum, cecum, right dorsal colon, and rectum) from four healthy horses immediately following euthanasia. Voided feces were also collected. RNA isolation, library preparation, and RNA sequencing was performed on fecal and intestinal mucosal samples. Comparison of gene expression profiles from the tissue and exfoliome revealed correlation of gene expression. Moreover, the exfoliome contained reads representing the diverse array of cell types found in the GI mucosa suggesting the equine exfoliome serves as a non-invasive means of examining the global gene expression pattern of the equine GI tract.


Assuntos
Cavalos/genética , Mucosa Intestinal/metabolismo , Intestino Grosso/metabolismo , Transcriptoma , Animais , Fezes/citologia , Intestino Grosso/citologia
18.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G451-G463, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905023

RESUMO

Consumption of a high-fat diet has been associated with an increased risk of developing colorectal cancer (CRC). However, the effects of the interaction between dietary fat content and the aryl hydrocarbon receptor (AhR) on colorectal carcinogenesis remain unclear. Mainly known for its role in xenobiotic metabolism, AhR has been identified as an important regulator for maintaining intestinal epithelial homeostasis. Although previous research using whole body AhR knockout mice has revealed an increased incidence of colon and cecal tumors, the unique role of AhR activity in intestinal epithelial cells (IECs) and modifying effects of fat content in the diet at different stages of sporadic CRC development are yet to be elucidated. In the present study, we have examined the effects of a high-fat diet on IEC-specific AhR knockout mice in a model of sporadic CRC. Although loss of AhR activity in IECs significantly induced the development of premalignant lesions, in a separate experiment, no significant changes in colon mass incidence were observed. Moreover, consumption of a high-fat diet promoted cell proliferation in crypts at the premalignant colon cancer lesion stage and colon mass multiplicity as well as ß-catenin expression and nuclear localization in actively proliferating cells in colon masses. Our data demonstrate the modifying effects of high-fat diet and AhR deletion in IECs on tumor initiation and progression.NEW & NOTEWORTHY Through the use of an intestinal-specific aryl hydrocarbon receptor (AhR) knockout mouse model, this study demonstrates that the expression of AhR in intestinal epithelial cells is required to reduce the formation of premalignant colon cancer lesions. Furthermore, consumption of a high-fat diet and the loss of AhR in intestinal epithelial cells influences the development of colorectal cancer at various stages.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Transformação Celular Neoplásica/metabolismo , Colo/metabolismo , Neoplasias do Colo/metabolismo , Dieta Hiperlipídica , Células Epiteliais/metabolismo , Deleção de Genes , Mucosa Intestinal/metabolismo , Lesões Pré-Cancerosas/metabolismo , Receptores de Hidrocarboneto Arílico/deficiência , Animais , Azoximetano , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Dano ao DNA , Modelos Animais de Doenças , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , beta Catenina/genética , beta Catenina/metabolismo
19.
BMC Med Res Methodol ; 19(1): 211, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752691

RESUMO

BACKGROUND: Engaging those who influence, administer and/or who are active users ("knowledge users") of health care systems, as co-producers of health research, can help to ensure that research products will better address real world needs. Our aim was to identify and review frameworks of knowledge user engagement in health research in a systematic manner, and to describe the concepts comprising these frameworks. METHODS: An international team sharing a common interest in knowledge user engagement in health research used a consensus-building process to: 1) agree upon criteria to identify articles, 2) screen articles to identify existing frameworks, 3) extract, analyze data, and 4) synthesize and report the concepts of knowledge user engagement described in health research frameworks. We utilized the Patient Centered Outcomes Research Institute Engagement in Health Research Literature Explorer (PCORI Explorer) as a source of articles related to engagement in health research. The search includes articles from May 1995 to December 2017. RESULTS: We identified 54 articles about frameworks for knowledge user engagement in health research and report on 15 concepts. The average number of concepts reported in the 54 articles is n = 7, and ranges from n = 1 to n = 13 concepts. The most commonly reported concepts are: knowledge user - prepare, support (n = 44), relational process (n = 39), research agenda (n = 38). The least commonly reported concepts are: methodology (n = 8), methods (n = 10) and analysis (n = 18). In a comparison of articles that report how research was done (n = 26) versus how research should be done (n = 28), articles about how research was done report concepts more often and have a higher average number of concepts (n = 8 of 15) in comparison to articles about how research should be done (n = 6 of 15). The exception is the concept "evaluate" and that is more often reported in articles that describe how research should be done. CONCLUSIONS: We propose that research teams 1) consider engagement with the 15 concepts as fluid, and 2) consider a form of partnered negotiation that takes place through all phases of research to identify and use concepts appropriate to their team needs. There is a need for further work to understand concepts for knowledge user engagement.


Assuntos
Atenção à Saúde , Pesquisa sobre Serviços de Saúde , Participação dos Interessados , Humanos
20.
Chem Res Toxicol ; 32(11): 2353-2364, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31621310

RESUMO

Many of the protective responses observed for flavonoids in the gastrointestinal track resemble aryl hydrocarbon receptor (AhR)-mediated effects. Therefore, we examined the structure-activity relationships of isoflavones and isomeric flavone and flavanones as AhR ligands on the basis of their induction of CYP1A1, CYP1B1, and UGT1A1 gene expression in colon cancer Caco2 cells and young adult mouse colonocyte (YAMC) cells. Caco2 cells were significantly more Ah-responsive than YAMC cells, and this was due, in part, to flavonoid-induced cytotoxicity in the latter cell lines. The structure-activity relationships for the flavonoids were complex and both response and cell context specific; however, there was significant variability in the AhR activities of the isomeric substituted isoflavones and flavones. For example, 4',5,7-trihydroxyisoflavone (genistein) was AhR-inactive whereas 4',5,7-trihydroxyflavone (apigenin) induced CYP1A1, CYP1B1, and UGT1A1 in Caco2 cells. In contrast, both 5,7-dihydroxy-4-methoxy substituted isoflavone (biochanin A) and flavone (acacetin) induced all three AhR-responsive genes; 4',5,7-trimethoxyisoflavone was a potent AhR agonist, and the isomeric flavone was AhR-inactive. These results coupled with simulation studies modeling flavonoid interaction within the AhR binding pocket demonstrate that the orientation of the substituted phenyl ring at C-2 (flavones) or C-3 (isoflavones) on the common 4-H-chromen-4-one ring strongly influences the activities of isoflavones and flavones as AhR agonists.


Assuntos
Flavonoides/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Animais , Linhagem Celular , Colo/citologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Flavonoides/química , Glucuronosiltransferase/metabolismo , Humanos , Camundongos , Modelos Moleculares , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA