RESUMO
Since the publication of this work [1] and in response to a recent query that was brought to our attention in relation to the Western Blot in Figure 1(C) for NP2, protein lysates prepared around the same time as those presented in the manuscript in question, were run by SDS-PAGE under similar experimental conditions and probed using the same primary antibodies to NP1 and NP2 that were used originally.
RESUMO
Undifferentiated human embryonic stem cells have a distinct morphology (hESC). Changes in cell morphology during culture can be indicative of differentiation. hESC, maintained in diverse medias, demonstrated alterations in morphological parameters and subsequent alterations in underlying transcript expression and lineage differentiation. Analysis of morphological parameters showed distinct and significant differences between the undefined, less defined and Xeno-free medias while still maintaining pluripotency markers. This suggested that the less defined media may be creating dynamic instability in the cytoskeleton, with the cytoskeleton becoming more stabilised in the Xeno-free media as demonstrated by smaller and rounder cells. Examination of early lineage markers during undirected differentiation using d5 embryoid bodies demonstrated increased mesodermal lineage preference as compared to endodermal or ectoderm in cells originally cultured in Xeno-free media. Undefined media showed preference for mesoderm and ectoderm lineages, while less defined media (BSA present) demonstrated no preference. These data reveal that culture media may produce fundamental changes in cell morphology which are reflected in early lineage differentiation choice.
Assuntos
Diferenciação Celular , Linhagem da Célula , Meios de Cultura/química , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes/citologia , Técnicas de Cultura de Células , Linhagem Celular , Análise por Conglomerados , Citoesqueleto/metabolismo , Ectoderma/citologia , Corpos Embrioides , Endoderma/citologia , Perfilação da Expressão Gênica , Humanos , Mesoderma/citologia , Microscopia de Fluorescência , Transcrição GênicaRESUMO
The IN Cell Analyzer 1000 possesses several distinguishing features that make it a valuable tool in research today. This fully automated high content screening (HCS) system introduced quantitative fluorescent microscopy with computerized image analysis for use in cell-based analysis. Previous studies have focused on live cell assays, where it has proven to be a powerful and robust method capable of providing reproducible, quantitative data. Using HCS as a tool to investigate antigen expression in duodenal biopsies, we developed a novel approach to tissue positioning and mapping. We adapted IN Cell Analyzer 1000's image acquisition and analysis software for the investigation of tissue transglutaminase (tTG) and smooth muscle alpha-actin (SM α-actin) staining in paraffin-embedded duodenal tissue sections from celiac patients and healthy controls. These innovations allowed a quantitative analysis of cellular structure and protein expression. The results from routine biopsy material indicated the intensity of protein expression was altered in celiac disease compared to normal biopsy material.
Assuntos
Doença Celíaca/patologia , Biópsia , Humanos , Microscopia de FluorescênciaRESUMO
BACKGROUND: The VEGF pathway has become an important therapeutic target in lung cancer, where VEGF has long been established as a potent pro-angiogenic growth factor expressed by many types of tumors. While Bevacizumab (Avastin) has proven successful in increasing the objective tumor response rate and in prolonging progression and overall survival in patients with NSCLC, the survival benefit is however relatively short and the majority of patients eventually relapse. The current use of tyrosine kinase inhibitors alone and in combination with chemotherapy has been underwhelming, highlighting an urgent need for new targeted therapies. In this study, we examined the mechanisms of VEGF-mediated survival in NSCLC cells and the role of the Neuropilin receptors in this process. METHODS: NSCLC cells were screened for expression of VEGF and its receptors. The effects of recombinant VEGF and its blockade on lung tumor cell proliferation and cell cycle were examined. Phosphorylation of Akt and Erk1/2 proteins was examined by high content analysis and confocal microscopy. The effects of silencing VEGF on cell proliferation and survival signaling were also assessed. A Neuropilin-1 stable-transfected cell line was generated. Cell growth characteristics in addition to pAkt and pErk1/2 signaling were studied in response to VEGF and its blockade. Tumor growth studies were carried out in nude mice following subcutaneous injection of NP1 over-expressing cells. RESULTS: Inhibition of the VEGF pathway with anti-VEGF and anti-VEGFR-2 antibodies or siRNA to VEGF, NP1 and NP2 resulted in growth inhibition of NP1 positive tumor cell lines associated with down-regulation of PI3K and MAPK kinase signaling. Stable transfection of NP1 negative cells with NP1 induced proliferation in vitro, which was further enhanced by exogenous VEGF. In vivo, NP1 over-expressing cells significantly increased tumor growth in xenografts compared to controls. CONCLUSIONS: Our data demonstrate that VEGF is an autocrine growth factor in NSCLC signaling, at least in part, through NP1. Targeting this VEGF receptor may offer potential as a novel therapeutic approach and also support the evaluation of the role of NP1 as a biomarker predicting sensitivity or resistance to VEGF and VEGFR-targeted therapies in the clinical arena.
Assuntos
Proteína C-Reativa/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Fosfatidilinositol 3-Quinases/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genéticaRESUMO
Single-walled carbon nanotubes (SWCNTs) have been widely explored as potential technologies for information systems and medical applications. The impact of SWCNTs on human health is of prime concern, if SWCNTs have a future in the manufacturing industry. This study proposes a novel, inflammation-independent paradigm of toxicity for SWCNTs, identifying the protein citrullination process as early-stage indicator of inflammatory responses of macrophages (THP-1) and of subtle phenotypic damages of lung epithelial (A549) cells following exposure to chemically-treated SWCNTs. Our results showed that, while most of the cellular responses of A549 cells exposed to SWCNTs are different to those of similarly treated THP-1 cells, the protein citrullination process is triggered in a dose- and time-dependent manner in both cell lines, with thresholds comparable between inflammatory (THP-1) and non-inflammatory (A549) cell types. The cellular mechanism proposed herein could have a high impact in predicting the current risk associated with environmental exposure to SWCNTs.