RESUMO
Cereblon (CRBN) has been successfully co-opted to affect the targeted degradation of "undruggable" proteins with immunomodulatory imide drugs (IMiDs). IMiDs act as molecule glues that facilitate ternary complex formation between CRBN and a target protein, leading to ubiquitination and proteasomal degradation. Subtle structural modifications often cause profound and sometimes unpredictable changes in the degradation selectivity. Herein, we successfully utilize enantioselective cyclopropanation and cyclopropenation on intact glutarimides to enable the preparation of stereochemically and regiochemically matched molecular pairs for structure-activity relationship (SAR) analysis across several classical CRBN neosubstrates. The resulting glutarimide analogs were found to reside in unique chemical space when compared to other IMiDs in the public domain. SAR studies revealed that, in addition to the more precedented impacts of regiochemistry, stereochemical modifications far from the glutarimide can lead to divergent neosubstrate selectivity. These findings emphasize the importance of enabling enantioselective methods for glutarimide-containing compounds to tune the degradation selectivity.
RESUMO
Immunomodulatory imide drugs form the core of many pharmaceutically relevant structures, but Csp2-Csp2 bond formation via metal-catalyzed cross coupling is difficult due to the sensitivity of the glutarimide ring ubiquitous in these structures. We report that replacement of the traditional alkali base with a fluoride source enhances a previously challenging Suzuki-Miyaura coupling on glutarimide-containing compounds with trifluoroborates. These enabling conditions are reactive enough to generate these derivatives in high yields but mild enough to preserve both the glutarimide and its sensitive stereocenter. Experimental and computational data suggest a mechanistically distinct process of π-coordination of the trifluoroborate enabled by these conditions.
Assuntos
Fluoretos , Paládio , Estrutura Molecular , Catálise , Paládio/químicaRESUMO
The site-selective palladium-catalyzed three-component coupling of unactivated alkenyl carbonyl compounds, aryl- or alkenylboronic acids, and N-fluorobenzenesulfonimide is described herein. Tuning of the steric environment on the bidentate directing auxiliary enhances regioselectivity and facilitates challenging C(sp3 )-F reductive elimination from a PdIV intermediate to afford 1,2-carbofluorination products in moderate to good yields.
Assuntos
Alcenos , Paládio , CatáliseRESUMO
Among aromatic compounds, borazarenes represent a significant class of isosteres in which carbon-carbon bonds have been replaced by B-N bonds. Described herein is a summary of the selective reactions that have been developed for known systems, as well as a summary of computationally-based predictions of selectivities that might be anticipated in reactions of yet unrealized substructures.
RESUMO
This paper describes an intermolecular cross-selective [2 + 2] photocycloaddition reaction of exocyclic arylidene oxetanes, azetidines, and cyclobutanes with simple electron-deficient alkenes. The reaction takes place under mild conditions using a commercially available Ir(III) photosensitizer upon blue light irradiation. This transformation provides access to a range of polysubstituted 2-oxaspiro[3.3]heptane, 2-azaspiro[3.3]heptane, and spiro[3.3]heptane motifs, which are of prime interest in medicinal chemistry as gem-dimethyl and carbonyl bioisosteres. A variety of further transformations of the initial cycloadducts are demonstrated to highlight the versatility of the products and enable selective access to either of a syn- or an anti-diastereoisomer through kinetic or thermodynamic epimerization, respectively. Mechanistic experiments and DFT calculations suggest that this reaction proceeds through a sensitized energy transfer pathway.
RESUMO
The synthesis and utilization of a class of 2,1-borazaronaphthyltrifluoroborate reagents that provide a general solution to the challenge of N-functionalization of the 2,1-borazaronaphthalene core is described. By adorning the nitrogen of this core with a trifluoroboratomethyl unit, a suite of odd-electron processes can be executed, installing motifs that would otherwise be inaccessible using a two-electron approach. In addition, this process enables rapid annulation, furnishing a heretofore unknown polycyclic B-N species.
Assuntos
Naftalenos/síntese química , Boratos/química , Catálise , Complexos de Coordenação/química , Irídio/química , Níquel/química , Oxirredução , Processos Fotoquímicos , Rutênio/químicaRESUMO
The chemoselective functionalization of polyfunctional aryl linchpins is crucial for rapid diversification. Although well-explored for Csp2 and Csp nucleophiles, the chemoselective introduction of Csp3 groups remains notoriously difficult and is virtually undocumented using Ni catalysts. To fill this methodological gap, a "haloselective" cross-coupling process of arenes bearing two halogens, I and Br, using ammonium alkylbis(catecholato)silicates, has been developed. Utilizing Ni/photoredox dual catalysis, Csp3 -Csp2 bonds can be forged selectively at the iodine-bearing carbon of bromo(iodo)arenes. The described high-yielding, base-free strategy accommodates various protic functional groups. Selective electrophile activation enables installation of a second Csp3 center and can be done without the need for purification of the intermediate monoalkylated product.
RESUMO
Methods for the regioselective C-H borylation and subsequent cross-coupling of the 2,1-borazaronaphthalene core are reported. Azaborines are dependent on B-N/CâC isosterism when employed in strategies for developing diverse heterocyclic scaffolds. Although 2,1-borazaronaphthalene is closely related to naphthalene in terms of structure, the argument is made that the former has electronic similarities to indole. Based on that premise, iridium-mediated C-H activation has enabled facile installation of a versatile, nucleophilic coupling handle at a previously inaccessible site of 2,1-borazaronaphthalenes. A variety of substituted 2,1-borazaronaphthalene cores can be successfully borylated and further cross-coupled in a facile manner to yield diverse C(8)-substituted 2,1-borazaronaphthalenes.
Assuntos
Naftalenos/química , Catálise , Irídio/química , Estrutura Molecular , Naftalenos/síntese química , EstereoisomerismoRESUMO
An approach to access azaborininones (carbonyl-containing, boron-based heterocyclic scaffolds) using simple reagents and conditions from both organotrifluoroborates and boronic acids is described. An inexpensive, common reagent, SiO2, was found to serve as both a fluorophile and desiccant to facilitate the annulation process across three different azaborininone platforms. Computational analysis of some of the cores synthesized in this study was undertaken to compare the azaborininones with the analogous carbon-based heterocyclic systems. Computationally derived pKa values, NICS aromaticity calculations, and electrostatic potential surfaces revealed a unique isoelectronic/isostructural relationship between these azaborines and their carbon isosteres that changed based on boron connectivity. Correlation to experimentally derived data supports the computational findings.
Assuntos
Compostos Aza/síntese química , Compostos de Boro/síntese química , Compostos Aza/química , Compostos de Boro/química , Estrutura Molecular , Teoria QuânticaRESUMO
The azaborine motif provides a mimic of aromatic systems through replacement of a CâC bond with a B-N bond. In particular, 2,1-borazaronaphthalenes, accessible through robust methods of synthesis and subsequent functionalization, afford an ideal platform to use for a variety of applications. However, the scope of substructures for this archetype has been limited by the lack of nitrogen-containing heteroaryls that can be incorporated within them. In this study, modified reaction conditions were developed to provide access to a wider range of substructures.
Assuntos
Naftalenos/síntese química , Nitrogênio/química , Boratos/química , Estrutura Molecular , Naftalenos/químicaRESUMO
The azaborine motif provides a unique opportunity to develop core isosteres by inserting B-N units in place of CâC bonds within aromatic scaffolds, creating new pseudoaromatic building blocks that retain comparable structural features. Previous synthetic routes to the 1,3,2-benzodiazaborole core have used organoboron dichlorides and boronic acids as the boron precursors. The transformation developed herein utilizes entirely bench stable starting materials, including organotrifluoroborates, enabling a wider array of substrate analogues under facile reaction conditions. Furthermore, physical, structural, and electronic properties of these compounds were explored computationally to understand the influence of the B-N replacement on the structure, aromaticity, and isosteric viability of these analogues.
Assuntos
Compostos Aza/síntese química , Compostos de Boro/síntese química , Boro/química , Ácidos Borônicos/síntese química , Compostos Aza/química , Compostos de Boro/química , Ácidos Borônicos/química , Estrutura MolecularRESUMO
A highly effective method for derivatizing 2,1-borazaronaphthalene cores using ammonium alkylbis(catecholato)silicates via photoredox/nickel dual catalysis is reported. By forging C(sp)(3)-C(sp)(2) bonds via this approach, alkyl fragments with various functional groups can be introduced to the azaborine core, affording previously inaccessible heterocyclic isosteres in good to excellent yields. The base-free, room-temperature conditions outlined allow sensitive functional group tolerance, even permitting the cross-coupling of unprotected primary and secondary amines.