Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0237723, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709067

RESUMO

Plasmodium falciparum, the deadly protozoan parasite responsible for malaria, has a tightly regulated gene expression profile closely linked to its intraerythrocytic development cycle. Epigenetic modifiers of the histone acetylation code have been identified as key regulators of the parasite's transcriptome but require further investigation. In this study, we map the genomic distribution of Plasmodium falciparum histone deacetylase 1 (PfHDAC1) across the erythrocytic asexual development cycle and find it has a dynamic occupancy over a wide array of developmentally relevant genes. Overexpression of PfHDAC1 results in a progressive increment in parasite load over consecutive rounds of the asexual infection cycle and is associated with enhanced gene expression of multiple families of host cell invasion factors (merozoite surface proteins, rhoptry proteins, etc.) and with increased merozoite invasion efficiency. With the use of class-specific inhibitors, we demonstrate that PfHDAC1 activity in parasites is crucial for timely intraerythrocytic development. Interestingly, overexpression of PfHDAC1 results in decreased sensitivity to frontline-drug dihydroartemisinin in parasites. Furthermore, we identify that artemisinin exposure can interfere with PfHDAC1 abundance and chromatin occupancy, resulting in enrichment over genes implicated in response/resistance to artemisinin. Finally, we identify that dihydroartemisinin exposure can interrupt the in vitro catalytic deacetylase activity and post-translational phosphorylation of PfHDAC1, aspects that are crucial for its genomic function. Collectively, our results demonstrate PfHDAC1 to be a regulator of critical functions in asexual parasite development and host invasion, which is responsive to artemisinin exposure stress and deterministic of resistance to it. IMPORTANCE: Malaria is a major public health problem, with the parasite Plasmodium falciparum causing most of the malaria-associated mortality. It is spread by the bite of infected mosquitoes and results in symptoms such as cyclic fever, chills, and headache. However, if left untreated, it can quickly progress to a more severe and life-threatening form. The World Health Organization currently recommends the use of artemisinin combination therapy, and it has worked as a gold standard for many years. Unfortunately, certain countries in southeast Asia and Africa, burdened with a high prevalence of malaria, have reported cases of drug-resistant infections. One of the major problems in controlling malaria is the emergence of artemisinin resistance. Population genomic studies have identified mutations in the Kelch13 gene as a molecular marker for artemisinin resistance. However, several reports thereafter indicated that Kelch13 is not the main mediator but rather hinted at transcriptional deregulation as a major determinant of drug resistance. Earlier, we identified PfGCN5 as a global regulator of stress-responsive genes, which are known to play a central role in artemisinin resistance generation. In this study, we have identified PfHDAC1, a histone deacetylase as a cell cycle regulator, playing an important role in artemisinin resistance generation. Taken together, our study identified key transcriptional regulators that play an important role in artemisinin resistance generation.

2.
Elife ; 122023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737226

RESUMO

Reverse genetics is key to understanding protein function, but the mechanistic connection between a gene of interest and the observed phenotype is not always clear. Here we describe the use of proximity labeling using TurboID and site-specific quantification of biotinylated peptides to measure changes to the local protein environment of selected targets upon perturbation. We apply this technique, which we call PerTurboID, to understand how the Plasmodium falciparum-exported kinase, FIKK4.1, regulates the function of the major virulence factor of the malaria-causing parasite, PfEMP1. We generated independent TurboID fusions of two proteins that are predicted substrates of FIKK4.1 in a FIKK4.1 conditional KO parasite line. Comparing the abundance of site-specific biotinylated peptides between wildtype and kinase deletion lines reveals the differential accessibility of proteins to biotinylation, indicating changes to localization, protein-protein interactions, or protein structure which are mediated by FIKK4.1 activity. We further show that FIKK4.1 is likely the only FIKK kinase that controls surface levels of PfEMP1, but not other surface antigens, on the infected red blood cell under standard culture conditions. We believe PerTurboID is broadly applicable to study the impact of genetic or environmental perturbation on a selected cellular niche.


Enzymes known as protein kinases regulate a huge variety of biological processes inside cells by attaching small tags known as phosphate groups onto specific locations on certain proteins. For example, the parasite that causes malaria infections in humans and great apes, injects a protein kinase called FIKK4.1 into certain cells in its host. This enzyme then adds phosphate groups to various parasite and host proteins that, in turn, causes them to form a large group of proteins (known as the cytoadhesion complex) to protect the parasite from being cleared by the hosts' immune defences. However, it remains unclear how and where the complex forms, and how the parasite regulates it. Proximity labelling is a well-established method that allows researchers to label and identify proteins that are near to a protein of interest. To investigate how the FIKK4.1 enzyme alters host cells to make the cytoadhesion complex, Davies et al. combined proximity labelling with methods that disturb the normal state of cells at a specific timepoint during development. The team used this new approach ­ named PerTurboID ­ to identify the proteins surrounding three components in the cytoadhesion complex. This made it possible to create a map of proteins that FIKK4.1 is likely to modify to build and control the cytoadhesion complex. Further experiments examined what happened to these surrounding proteins when FIKK4.1 was inactivated. This revealed that some protein targets of FIKK4.1 become either more or less accessible to other enzymes that attach a molecule known as biotin to proteins. This could be a result of structural changes in the cytoadhesion complex that are normally regulated by the FIKK4.1 kinase. In the future, PerTurboID may be useful to study how genetics or environmental changes affect other groups of proteins within specific environments inside cells, such as protein complexes required for DNA replication or cell division, or assembly of temporal structures required for cell movement.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Plasmodium falciparum/metabolismo , Fosfotransferases/genética , Eritrócitos/parasitologia , Peptídeos/metabolismo , Malária Falciparum/parasitologia
3.
Antimicrob Agents Chemother ; 67(8): e0035623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428074

RESUMO

Malaria parasites in the blood stage express a single transmembrane transport protein for the release of the glycolytic end product l-lactate/H+ from the cell. This transporter is a member of the strictly microbial formate-nitrite transporter (FNT) family and a novel putative drug target. Small, drug-like FNT inhibitors potently block lactate transport and kill Plasmodium falciparum parasites in culture. The protein structure of Plasmodium falciparum FNT (PfFNT) in complex with the inhibitor has been resolved and confirms its previously predicted binding site and its mode of action as a substrate analog. Here, we investigated the mutational plasticity and essentiality of the PfFNT target on a genetic level, and established its in vivo druggability using mouse malaria models. We found that, besides a previously identified PfFNT G107S resistance mutation, selection of parasites at 3 × IC50 (50% inhibitory concentration) gave rise to two new point mutations affecting inhibitor binding: G21E and V196L. Conditional knockout and mutation of the PfFNT gene showed essentiality in the blood stage, whereas no phenotypic defects in sexual development were observed. PfFNT inhibitors mainly targeted the trophozoite stage and exhibited high potency in P. berghei- and P. falciparum-infected mice. Their in vivo activity profiles were comparable to that of artesunate, demonstrating strong potential for the further development of PfFNT inhibitors as novel antimalarials.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Camundongos , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malária Falciparum/parasitologia , Antimaláricos/farmacologia , Antimaláricos/química , Parasitos/metabolismo , Lactatos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819379

RESUMO

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


Assuntos
Eritrócitos/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/genética , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/fisiologia , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Animais , Eritrócitos/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50 , Locomoção , Proteínas de Membrana/metabolismo , Transdução de Sinais
5.
mSphere ; 6(3)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011691

RESUMO

Malaria is a mosquito-borne disease caused by apicomplexan parasites of the genus Plasmodium. Completion of the parasite's life cycle depends on the transmission of sexual stages, the gametocytes, from an infected human host to the mosquito vector. Sexual commitment occurs in only a small fraction of asexual blood-stage parasites and is initiated by external cues. The gametocyte development protein 1 (GDV1) has been described as a key facilitator to trigger sexual commitment. GDV1 interacts with the silencing factor heterochromatin protein 1 (HP1), leading to its dissociation from heterochromatic DNA at the genomic locus encoding AP2-G, the master transcription factor of gametocytogenesis. How this process is regulated is not known. In this study, we have addressed the role of protein kinases implicated in gametocyte development. From a pool of available protein kinase knockout (KO) lines, we identified two kinase knockout lines which fail to produce gametocytes. However, independent genetic verification revealed that both kinases are not required for gametocytogenesis but that both lines harbor the same mutation that leads to a truncation in the extreme C terminus of GDV1. Introduction of the identified nonsense mutation into the genome of wild-type parasite lines replicates the observed phenotype. Using a GDV1 overexpression line, we show that the truncation in the GDV1 C terminus does not interfere with the nuclear import of GDV1 or its interaction with HP1 in vitro but appears to be important to sustain GDV1 protein levels and thereby sexual commitment.IMPORTANCE Transmission of malaria-causing Plasmodium species by mosquitos requires the parasite to change from a continuously growing asexual parasite form growing in the blood to a sexually differentiated form, the gametocyte. Only a small subset of asexual parasites differentiates into gametocytes that are taken up by the mosquito. Transmission represents a bottleneck in the life cycle of the parasite, so a molecular understanding of the events that lead to stage conversion may identify novel intervention points. Here, we screened a subset of kinases we hypothesized to play a role in this process. While we did not identify kinases required for sexual conversion, we identified a mutation in the C terminus of the gametocyte development 1 protein (GDV1), which abrogates sexual development. The mutation destabilizes the protein but not its interaction with its cognate binding partner HP1. This suggests an important role for the GDV1 C terminus beyond trafficking and protein stability.


Assuntos
Aminoácidos/genética , Gametogênese/genética , Estágios do Ciclo de Vida/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Regulação da Expressão Gênica , Humanos , Malária Falciparum , Plasmodium falciparum/química , Proteínas de Protozoários/química , Análise de Sequência de RNA , Diferenciação Sexual/genética
6.
Nat Microbiol ; 5(6): 848-863, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32284562

RESUMO

The most severe form of human malaria is caused by Plasmodium falciparum. Its virulence is closely linked to the increase in rigidity of infected erythrocytes and their adhesion to endothelial receptors, obstructing blood flow to vital organs. Unlike other human-infecting Plasmodium species, P. falciparum exports a family of 18 FIKK serine/threonine kinases into the host cell, suggesting that phosphorylation may modulate erythrocyte modifications. We reveal substantial species-specific phosphorylation of erythrocyte proteins by P. falciparum but not by Plasmodium knowlesi, which does not export FIKK kinases. By conditionally deleting all FIKK kinases combined with large-scale quantitative phosphoproteomics we identified unique phosphorylation fingerprints for each kinase, including phosphosites on parasite virulence factors and host erythrocyte proteins. Despite their non-overlapping target sites, a network analysis revealed that some FIKKs may act in the same pathways. Only the deletion of the non-exported kinase FIKK8 resulted in reduced parasite growth, suggesting the exported FIKKs may instead support functions important for survival in the host. We show that one kinase, FIKK4.1, mediates both rigidification of the erythrocyte cytoskeleton and trafficking of the adhesin and key virulence factor PfEMP1 to the host cell surface. This establishes the FIKK family as important drivers of parasite evolution and malaria pathology.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/parasitologia , Malária/metabolismo , Malária/parasitologia , Fosfotransferases/metabolismo , Plasmodium/fisiologia , Proteínas de Protozoários/metabolismo , Deleção de Genes , Técnicas de Silenciamento de Genes , Marcação de Genes , Humanos , Família Multigênica , Fosfoproteínas , Fosforilação , Fosfotransferases/genética , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Especificidade da Espécie , Virulência
7.
FEMS Microbiol Rev ; 41(6): 923-940, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29077880

RESUMO

Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.


Assuntos
Plasmodium/genética , Plasmodium/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sequências Repetitivas de Aminoácidos/genética
8.
J Biol Chem ; 291(50): 26188-26207, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27777305

RESUMO

Repetitive low complexity sequences, mostly assumed to have no function, are common in proteins that are exported by the malaria parasite into its host erythrocyte. We identify a group of exported proteins containing short lysine-rich tandemly repeated sequences that are sufficient to localize to the erythrocyte periphery, where key virulence-related modifications to the plasma membrane and the underlying cytoskeleton are known to occur. Efficiency of targeting is dependent on repeat number, indicating that novel targeting modules could evolve by expansion of short lysine-rich sequences. Indeed, analysis of fragments of GARP from different species shows that two novel targeting sequences have arisen via the process of repeat expansion in this protein. In the protein Hyp12, the targeting function of a lysine-rich sequence is masked by a neighboring repetitive acidic sequence, further highlighting the importance of repetitive low complexity sequences. We show that sequences capable of targeting the erythrocyte periphery are present in at least nine proteins from Plasmodium falciparum and one from Plasmodium knowlesi We find these sequences in proteins known to be involved in erythrocyte rigidification and cytoadhesion as well as in previously uncharacterized exported proteins. Together, these data suggest that expansion and contraction of lysine-rich repeats could generate targeting sequences de novo as well as modulate protein targeting efficiency and function in response to selective pressure.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum , Plasmodium knowlesi , Proteínas de Protozoários , Animais , Eritrócitos/metabolismo , Humanos , Camundongos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sequências Repetitivas de Aminoácidos
9.
J Antimicrob Chemother ; 70(6): 1691-703, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25656411

RESUMO

OBJECTIVES: (S)-Leucoxine, isolated from the Colombian Lauraceae tree Rhodostemonodaphne crenaticupula Madriñan, was found to inhibit the growth of Mycobacterium tuberculosis H37Rv. A biomimetic approach for the chemical synthesis of a wide array of 1-substituted tetrahydroisoquinolines was undertaken with the aim of elucidating a common pharmacophore for these compounds with novel mode(s) of anti-TB action. METHODS: Biomimetic Pictet-Spengler or Bischler-Napieralski synthetic routes were employed followed by an evaluation of the biological activity of the synthesized compounds. RESULTS: In this work, the synthesized tetrahydroisoquinolines were found to inhibit the growth of M. tuberculosis H37Rv and affect its whole-cell phenotype as well as the activity of the ATP-dependent MurE ligase, a key enzyme involved in the early stage of cell wall peptidoglycan biosynthesis. CONCLUSIONS: As the correlation between the MIC and the half-inhibitory enzymatic concentration was not particularly strong, there is a credible possibility that these compounds have pleiotropic mechanism(s) of action in M. tuberculosis.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/efeitos adversos , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeo Sintases/efeitos adversos , Tetra-Hidroisoquinolinas/farmacologia , Antituberculosos/síntese química , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tetra-Hidroisoquinolinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA