Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(3): 1497-1509, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33499592

RESUMO

For the first time, the in silico design, screening, and in vitro validation of potent GSK-3ß type-II inhibitors are presented. In the absence of crystallographic evidence for a DFG-out GSK-3ß activation loop conformation, computational models were designed using an adapted DOLPHIN approach and a method consisting of Prime loop refinement, induced-fit docking, and molecular dynamics. Virtual screening of the Biogenics subset from the ZINC database led to an initial selection of 20 Phase I compounds revealing two low micromolar inhibitors in an isolated enzyme assay. Twenty more analogues (Phase II compounds) related to the hit [pyrimidin-2-yl]amino-furo[3,2-b]furyl-urea scaffold were selected for structure-activity relationship analysis. The Phase II studies led to five highly potent nanomolar inhibitors, with compound 23 (IC50 =0.087 µM) > 100 times more potent than the best Phase I inhibitor, and selectivity for GSK-3ß inhibition compared to homologous kinases was observed. Ex vivo experiments (SH-SY5Y cell lines) for tau hyperphosphorylation revealed promising neuroprotective effects at low micromolar concentrations. The type-II inhibitor design has been unraveled as a potential route toward more clinically effective GSK-3ß inhibitors.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosforilação , Relação Estrutura-Atividade , Especificidade por Substrato , Proteínas tau/biossíntese , Proteínas tau/genética
2.
J Med Entomol ; 56(6): 1684-1697, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31225584

RESUMO

Insects are efficient vectors of bacteria and in the hospital environment may have a role in spreading nosocomial infections. This study sampled the flying insect populations of seven hospitals in the United Kingdom and characterized the associated culturome of Diptera, including the antibiotic resistance profile of bacterial isolates. Flying insects were collected in seven U.K. hospitals between the period March 2010 to August 2011. The bacteria carried by Diptera were isolated using culture-based techniques, identified and characterized by antimicrobial susceptibility testing. A total of 19,937 individual insects were collected with Diptera being the most abundant (73.6% of the total), followed by Hemiptera (13.9%), Hymenoptera (4.7%), Lepidoptera (2.9%), and Coleoptera (2%). From Diptera, 82 bacterial strains were identified. The majority of bacteria belonged to the Enterobacteriaceae (42%), followed by Bacillus spp. (24%) and Staphylococcus spp. (19%). Less abundant were bacteria of the genus Clostridium (6%), Streptococcus (5%), and Micrococcus (2%). A total of 68 bacterial strains were characterized for their antibiotic resistance profile; 52.9% demonstrated a resistant phenotype to at least one class of antibiotic. Staphylococcus spp. represented the highest proportion of resistant strains (83.3%), followed by Bacillus spp. (60%) and Enterobacteriaceae (31.3%). Diptera were the predominant flying insects present in the U.K. hospital environments sampled and found to harbor a variety of opportunistic human pathogens with associated antimicrobial resistance profiles. Given the ability of flies to act as mechanical vectors of bacteria, they present a potential to contribute to persistence and spread of antimicrobial-resistant pathogenic bacteria in the hospital environment.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/isolamento & purificação , Dípteros/microbiologia , Farmacorresistência Bacteriana , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Inglaterra , Hospitais , Muscidae/microbiologia , Psychodidae/microbiologia
3.
ACS Chem Biol ; 14(7): 1460-1470, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31243960

RESUMO

Several C-ß-d-glucopyranosyl azoles have recently been uncovered as among the most potent glycogen phosphorylase (GP) catalytic site inhibitors discovered to date. Toward further exploring their translational potential, ex vivo experiments have been performed for their effectiveness in reduction of glycogenolysis in hepatocytes. New compounds for these experiments were predicted in silico where, for the first time, effective ranking of GP catalytic site inhibitor potencies using the molecular mechanics-generalized Born surface area (MM-GBSA) method has been demonstrated. For a congeneric training set of 27 ligands, excellent statistics in terms of Pearson (RP) and Spearman (RS) correlations (both 0.98), predictive index (PI = 0.99), and area under the receiver operating characteristic curve (AU-ROC = 0.99) for predicted versus experimental binding affinities were obtained, with ligand tautomeric/ionization states additionally considered using density functional theory (DFT). Seven 2-aryl-4(5)-(ß-d-glucopyranosyl)-imidazoles and 2-aryl-4-(ß-d-glucopyranosyl)-thiazoles were subsequently synthesized, and kinetics experiments against rabbit muscle GPb revealed new potent inhibitors with best Ki values in the low micromolar range (5c = 1.97 µM; 13b = 4.58 µM). Ten C-ß-d-glucopyranosyl azoles were then tested ex vivo in mouse primary hepatocytes. Four of these (5a-c and 9d) demonstrated significant reduction of glucagon stimulated glycogenolysis (IC50 = 30-60 µM). Structural and predicted physicochemical properties associated with their effectiveness were analyzed with permeability related parameters identified as crucial factors. The most effective ligand series 5 contained an imidazole ring, and the calculated pKa (Epik: 6.2; Jaguar 5.5) for protonated imidazole suggests that cellular permeation through the neutral state is favored, while within the cell, there is predicted more favorable binding to GP in the protonated form.


Assuntos
Azóis/farmacologia , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Glicogenólise/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Animais , Azóis/química , Células CACO-2 , Desenho de Fármacos , Inibidores Enzimáticos/química , Glicogênio Fosforilase/metabolismo , Hepatócitos/metabolismo , Humanos , Modelos Moleculares , Coelhos , Relação Estrutura-Atividade
4.
Biochemistry ; 42(18): 5438-52, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12731886

RESUMO

Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate constants in the initial intermediate formed during acylation (EAP, where EA is the acyl enzyme and P is the alcohol leaving group cleaved from the ester substrate) may be constrained such that the leaving group P must dissociate before hydrolytic deacylation can occur.


Assuntos
Acetanilidas/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Acetiltiocolina/metabolismo , Acetofenonas/química , Acetofenonas/metabolismo , Acetofenonas/farmacologia , Acetilcolinesterase/genética , Acilação , Benzotiazóis , Sítios de Ligação , Catálise , Inibidores da Colinesterase/metabolismo , Interações Medicamentosas , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/farmacologia , Humanos , Hidrólise , Ligantes , Modelos Químicos , Mutagênese Sítio-Dirigida , Propídio/química , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato/efeitos dos fármacos , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA