Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(7): 3477-3490, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32274003

RESUMO

Mouse plagues are a regular feature of grain-growing regions, particularly in southern and eastern Australia, yet it is not clear what role various ecological processes play in the eruptive dynamics generating these outbreaks.This research was designed to assess the impact of adding food, water, and cover in all combinations on breeding performance, abundance, and survival of mouse populations on a typical cereal growing farm in northwestern Victoria.Supplementary food, water, and cover were applied in a 2 × 2 × 2 factorial design to 240 m sections of internal fence lines between wheat or barley crops and stubble/pasture fields over an 11-month period to assess the impact on mouse populations.We confirmed that mice were eating the additional food and were accessing the water provided. We did not generate an outbreak of mice, but there were some significant effects from the experimental treatments. Additional food increased population size twofold and improved apparent survival. Both water and cover improved breeding performance. Food and cover increased apparent survival.Our findings confirm that access to food, water, and cover are necessary for outbreaks, but are not sufficient. There remain additional factors that are important in generating mouse plagues, particularly in a climatically variable agricultural environment.

2.
Environ Monit Assess ; 189(8): 416, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28748427

RESUMO

Stem diameter is one of the most common measurements made to assess the growth of woody vegetation, and the commercial and environmental benefits that it provides (e.g. wood or biomass products, carbon sequestration, landscape remediation). Yet inconsistency in its measurement is a continuing source of error in estimates of stand-scale measures such as basal area, biomass, and volume. Here we assessed errors in stem diameter measurement through repeated measurements of individual trees and shrubs of varying size and form (i.e. single- and multi-stemmed) across a range of contrasting stands, from complex mixed-species plantings to commercial single-species plantations. We compared a standard diameter tape with a Stepped Diameter Gauge (SDG) for time efficiency and measurement error. Measurement errors in diameter were slightly (but significantly) influenced by size and form of the tree or shrub, and stem height at which the measurement was made. Compared to standard tape measurement, the mean systematic error with SDG measurement was only -0.17 cm, but varied between -0.10 and -0.52 cm. Similarly, random error was relatively large, with standard deviations (and percentage coefficients of variation) averaging only 0.36 cm (and 3.8%), but varying between 0.14 and 0.61 cm (and 1.9 and 7.1%). However, at the stand scale, sampling errors (i.e. how well individual trees or shrubs selected for measurement of diameter represented the true stand population in terms of the average and distribution of diameter) generally had at least a tenfold greater influence on random errors in basal area estimates than errors in diameter measurements. This supports the use of diameter measurement tools that have high efficiency, such as the SDG. Use of the SDG almost halved the time required for measurements compared to the diameter tape. Based on these findings, recommendations include the following: (i) use of a tape to maximise accuracy when developing allometric models, or when monitoring relatively small changes in permanent sample plots (e.g. National Forest Inventories), noting that care is required in irregular-shaped, large-single-stemmed individuals, and (ii) use of a SDG to maximise efficiency when using inventory methods to assess basal area, and hence biomass or wood volume, at the stand scale (i.e. in studies of impacts of management or site quality) where there are budgetary constraints, noting the importance of sufficient sample sizes to ensure that the population sampled represents the true population.


Assuntos
Monitoramento Ambiental/métodos , Caules de Planta/crescimento & desenvolvimento , Biomassa , Carbono/análise , Sequestro de Carbono , Monitoramento Ambiental/normas , Florestas , Modelos Teóricos , Caules de Planta/química , Viés de Seleção , Árvores/crescimento & desenvolvimento , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA