Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 133(19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32895244

RESUMO

Cytokinesis in land plants involves the formation of a cell plate that develops into the new cell wall. Callose, a ß-1,3 glucan, accumulates at later stages of cell plate development, presumably to stabilize this delicate membrane network during expansion. Cytokinetic callose is considered specific to multicellular plant species, because it has not been detected in unicellular algae. Here we present callose at the cytokinesis junction of the unicellular charophyte, Penium margaritaceum Callose deposition at the division plane of P. margaritaceum showed distinct, spatiotemporal patterns likely representing distinct roles of this polymer in cytokinesis. Pharmacological inhibition of callose deposition by endosidin 7 resulted in cytokinesis defects, consistent with the essential role for this polymer in P. margaritaceum cell division. Cell wall deposition at the isthmus zone was also affected by the absence of callose, demonstrating the dynamic nature of new wall assembly in P. margaritaceum The identification of candidate callose synthase genes provides molecular evidence for callose biosynthesis in P. margaritaceum The evolutionary implications of cytokinetic callose in this unicellular zygnematopycean alga is discussed in the context of the conquest of land by plants.This article has an associated First Person interview with the first author of the paper.


Assuntos
Carofíceas , Citocinese , Parede Celular , Glucanos
2.
Front Plant Sci ; 11: 595055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469461

RESUMO

The intensive use of groundwater in agriculture under the current climate conditions leads to acceleration of soil salinization. Given that almond is a salt-sensitive crop, selection of salt-tolerant rootstocks can help maintain productivity under salinity stress. Selection for tolerant rootstocks at an early growth stage can reduce the investment of time and resources. However, salinity-sensitive markers and salinity tolerance mechanisms of almond species to assist this selection process are largely unknown. We established a microscopy-based approach to investigate mechanisms of stress tolerance in and identified cellular, root anatomical, and molecular traits associated with rootstocks exhibiting salt tolerance. We characterized three almond rootstocks: Empyrean-1 (E1), Controller-5 (C5), and Krymsk-86 (K86). Based on cellular and molecular evidence, our results show that E1 has a higher capacity for salt exclusion by a combination of upregulating ion transporter expression and enhanced deposition of suberin and lignin in the root apoplastic barriers, exodermis, and endodermis, in response to salt stress. Expression analyses revealed differential regulation of cation transporters, stress signaling, and biopolymer synthesis genes in the different rootstocks. This foundational study reveals the mechanisms of salinity tolerance in almond rootstocks from cellular and structural perspectives across a root developmental gradient and provides insights for future screens targeting stress response.

3.
Plant Cell ; 31(3): 627-644, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760563

RESUMO

The plant endomembrane system facilitates the transport of polysaccharides, associated enzymes, and glycoproteins through its dynamic pathways. Although enzymes involved in cell wall biosynthesis have been identified, little is known about the endomembrane-based transport of glycan components. This is partially attributed to technical challenges in biochemically determining polysaccharide cargo in specific vesicles. Here, we introduce a hybrid approach addressing this limitation. By combining vesicle isolation with a large-scale carbohydrate antibody arraying technique, we charted an initial large-scale map describing the glycome profile of the SYNTAXIN OF PLANTS61 (SYP61) trans-Golgi network compartment in Arabidopsis (Arabidopsis thaliana). A library of antibodies recognizing specific noncellulosic carbohydrate epitopes allowed us to identify a range of diverse glycans, including pectins, xyloglucans (XyGs), and arabinogalactan proteins in isolated vesicles. Changes in XyG- and pectin-specific epitopes in the cell wall of an Arabidopsis SYP61 mutant corroborate our findings. Our data provide evidence that SYP61 vesicles are involved in the transport and deposition of structural polysaccharides and glycoproteins. Adaptation of our methodology can enable studies characterizing the glycome profiles of various vesicle populations in plant and animal systems and their respective roles in glycan transport defined by subcellular markers, developmental stages, or environmental stimuli.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicômica , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Carboidratos/imunologia , Parede Celular/metabolismo , Epitopos/imunologia , Mutação , Transporte Proteico , Proteínas Qa-SNARE/genética , Rede trans-Golgi/metabolismo
4.
Methods Mol Biol ; 1459: 47-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27665550

RESUMO

Unconventional protein secretion (UPS) describes secretion pathways that bypass one or several of the canonical secretion pit-stops on the way to the plasma membrane, and/or involve the secretion of leaderless proteins. So far, alternatives to conventional secretion were primarily observed and studied in yeast and animal cells. The sessile lifestyle of plants brings with it unique restraints on how they adapt to adverse conditions and environmental challenges. Recently, attention towards unconventional secretion pathways in plant cells has substantially increased, with the large number of leaderless proteins identified through proteomic studies. While UPS pathways in plants are certainly not yet exhaustively researched, an emerging notion is that induction of UPS pathways is correlated with pathogenesis and stress responses. Given the multitude UPS events observed, comprehensively organizing the routes proteins take to the apoplast in defined UPS categories is challenging. With the establishment of a larger collection of studied plant proteins taking these UPS pathways, a clearer picture of endomembrane trafficking as a whole will emerge. There are several novel enabling technologies, such as vesicle proteomics and chemical genomics, with great potential for dissecting secretion pathways, providing information about the cargo that travels along them and the conditions that induce them.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Via Secretória , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Exocitose , Exossomos/metabolismo , Complexo de Golgi/metabolismo , Fusão de Membrana , Organelas/metabolismo , Transporte Proteico , Proteômica , Vesículas Secretórias/metabolismo , Leveduras/metabolismo
5.
Plant Signal Behav ; 11(3): e984520, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27408949

RESUMO

Cytokinesis in plants requires the activity of RAB GTPases to regulate vesicle-mediated contribution of material to the developing cell plate. While some plant RAB GTPases have been shown to be involved in cell plate formation, many still await functional assignment. Here, we report cell plate localization for YFP-RABA1e in Arabidopsis thaliana and use the cytokinesis inhibitor Endosidin 7 to provide a detailed description of its localization compared to YFP-RABA2a. Differences between YFP-RABA2a and YFP-RABA1e were observed in late-stage cell plates under DMSO control treatment, and became more apparent under Endosidin 7 treatment. Taken together, our results suggest that individual RAB GTPases might make different contributions to cell plate formation and further demonstrates the utility of ES7 probe to dissect them.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Citocinese/fisiologia , Quinolonas/farmacologia , Proteínas rab de Ligação ao GTP/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/análise , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Citocinese/efeitos dos fármacos , Transdução de Sinais , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/metabolismo
6.
Plant Physiol ; 165(3): 1019-1034, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24858949

RESUMO

Although cytokinesis is vital for plant growth and development, our mechanistic understanding of the highly regulated membrane and cargo transport mechanisms in relation to polysaccharide deposition during this process is limited. Here, we present an in-depth characterization of the small molecule endosidin 7 (ES7) inhibiting callose synthase activity and arresting late cytokinesis both in vitro and in vivo in Arabidopsis (Arabidopsis thaliana). ES7 is a specific inhibitor for plant callose deposition during cytokinesis that does not affect endomembrane trafficking during interphase or cytoskeletal organization. The specificity of ES7 was demonstrated (1) by comparing its action with that of known inhibitors such as caffeine, flufenacet, and concanamycin A and (2) across kingdoms with a comparison in yeast. The interplay between cell plate-specific post-Golgi vesicle traffic and callose accumulation was analyzed using ES7, and it revealed unique and temporal contributions of secretory and endosomal vesicles in cell plate maturation. While RABA2A-labeled vesicles, which accumulate at the early stage of cell plate formation, were not affected by ES7, KNOLLE was differentially altered by the small molecule. In addition, the presence of clathrin-coated vesicles in cells containing elevated levels of callose and their reduction under ES7 treatment further support the role of endocytic membrane remodeling in the maturing cell plate while the plate is stabilized by callose. Taken together, these data show the essential role of callose during the late stages of cell plate maturation and establish the temporal relationship between vesicles and regulatory proteins at the cell plate assembly matrix during polysaccharide deposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA