Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 751: 142271, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182014

RESUMO

Regrowth after fire is critical to the persistence of chaparral shrub communities in southern California, which has been subject to frequent fire events in recent decades. Fires that recur at short intervals of 10 years or less have been considered an inhibitor of recovery and the major cause of 'community type-conversion' in chaparral, primarily based on studies of small extents and limited time periods. However, recent sub-regional investigations based on remote sensing suggest that short-interval fire (SIF) does not have ubiquitous impact on postfire chaparral recovery. A region-wide analysis including a greater spatial extent and time period is needed to better understand SIF impact on chaparral. This study evaluates patterns of postfire recovery across southern California, based on temporal trajectories of Normalized Difference Vegetation Index (NDVI) derived from June-solstice Landsat image series covering the period 1984-2018. High spatial resolution aerial images were used to calibrate Landsat NDVI trajectory-based estimates of change in fractional shrub cover (dFSC) for 294 stands. The objectives of this study were (1) to assess effects of time between fires and number of burns on recovery, using stand-aggregate samples (n = 294) and paired single- and multiple-burn sample plots (n = 528), and (2) to explain recovery variations among predominant single-burn locations based on shrub community type, climate, soils, and terrain. Stand-aggregate samples showed a significant but weak effect of SIF on recovery (p < 0.001; R2 = 0.003). Results from paired sample plots showed no significant effect of SIF on dFSC among twice-burned sites, although recovery was diminished due to SIF at sites that burned three times within 25 years. Multiple linear regression showed that annual precipitation and temperature, chaparral community type, and edaphic variables explain 28% of regional variation in recovery of once-burned sites. Many stands that exhibited poor recovery had burned only once and consist of xeric, desert-fringe chamise in soils of low clay content.


Assuntos
Ecossistema , Incêndios , California , Clima , Solo
2.
Ecosystems ; 20202020.
Artigo em Inglês | MEDLINE | ID: mdl-33293894

RESUMO

Chaparral shrubs in southern California may be vulnerable to frequent fire and severe drought. Drought may diminish postfire recovery or worsen impact of short-interval fires. Field-based studies have not shown the extent and magnitude of drought effects on recovery, which may vary among chaparral types and climatic zones. We tracked regional patterns of shrub cover based on June-solstice Landsat Normalized Difference Vegetation Index series, compared between the periods 1984-1989 and 2014-2018. High spatial resolution ortho-imagery was used to map shrub cover in distributed sample plots, to empirically constrain the Landsat-based estimates of mature-stage lateral canopy recovery. We evaluated precipitation, climatic water deficit (CWD), and Palmer Drought Severity Index in summer and wet seasons preceding and following fire, as regional predictors of recovery in 982 locations between the Pacific Coast and inland deserts. Wet-season CWD was the strongest drought-metric predictor of recovery, contributing 34-43 % of explanatory power in multivariate regressions (R 2 =0.16-0.42). Limited recovery linked to drought was most prevalent in transmontane chamise chaparral; impacts were minor in montane areas, and in mixed and montane chaparral types. Elevation was correlated negatively to recovery of transmontane chamise; this may imply acute drought sensitivity in resprouts which predominate seedlings at higher elevations. Landsat Visible Atmospherically Resistant Index (sensitive to live-fuel moisture) was evaluated as a landscape-scale predictor of recovery and explained the greatest amount of variance in a multivariate regression (R 2 = 0.53). We find that drought severity was more closely related to recovery differences among twice-burned sites than was fire-return interval. Summarily, drought has a major role in long-term shrub cover reduction within xeric chaparral ecotones bounding the Mojave Desert and Colorado Desert, likely in tandem with other global change stressors.

3.
Ambio ; 48(2): 139-152, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29949079

RESUMO

The field of systematic conservation planning has grown substantially, with hundreds of publications in the peer-reviewed literature and numerous applications to regional conservation planning globally. However, the extent to which systematic conservation plans have influenced management is unclear. This paper analyses factors that facilitate the transition from assessment to implementation in conservation planning, in order to help integrate assessment and implementation into a seamless process. We propose a framework for designing implementation strategies, taking into account three critical planning aspects: processes, inputs, and context. Our review identified sixteen processes, which we broadly grouped into four themes and eight inputs. We illustrate how the framework can be used to inform context-dependent implementation strategies, using the process of 'engagement' as an example. The example application includes both lessons learned from successfully implemented plans across the engagement spectrum, and highlights key barriers that can hinder attempts to bridge the assessment-implementation gap.


Assuntos
Conservação dos Recursos Naturais
4.
Ecol Appl ; 28(3): 749-760, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29509310

RESUMO

The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.


Assuntos
Biodiversidade , Tecnologia de Sensoriamento Remoto/instrumentação , Oceanos e Mares , Fitoplâncton
6.
Glob Chang Biol ; 22(7): 2329-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26898361

RESUMO

We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate-induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought-tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.


Assuntos
Biodiversidade , Secas , Florestas , Ecossistema , Árvores , Estados Unidos
7.
PLoS One ; 10(11): e0140226, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26529595

RESUMO

Balancing society's competing needs of development and conservation requires careful consideration of tradeoffs. Renewable energy development and biodiversity conservation are often considered beneficial environmental goals. The direct footprint and disturbance of renewable energy, however, can displace species' habitat and negatively impact populations and natural communities if sited without ecological consideration. Offsets have emerged as a potentially useful tool to mitigate residual impacts after trying to avoid, minimize, or restore affected sites. Yet the problem of efficiently designing a set of offset sites becomes increasingly complex where many species or many sites are involved. Spatial conservation prioritization tools are designed to handle this problem, but have seen little application to offset siting and analysis. To address this need we designed an offset siting support tool for the Desert Renewable Energy Conservation Plan (DRECP) of California, and present a case study of hypothetical impacts from solar development in the Western Mojave subsection. We compare two offset scenarios designed to mitigate a hypothetical 15,331 ha derived from proposed utility-scale solar energy development (USSED) projects. The first scenario prioritizes offsets based precisely on impacted features, while the second scenario offsets impacts to maximize biodiversity conservation gains in the region. The two methods only agree on 28% of their prioritized sites and differ in meeting species-specific offset goals. Differences between the two scenarios highlight the importance of clearly specifying choices and priorities for offset siting and mitigation in general. Similarly, the effects of background climate and land use change may lessen the durability or effectiveness of offsets if not considered. Our offset siting support tool was designed specifically for the DRECP area, but with minor code modification could work well in other offset analyses, and could provide continuing support for a potentially innovative mitigation solution to environmental impacts.


Assuntos
Conservação de Recursos Energéticos/métodos , Energia Solar , Biodiversidade , California , Clima Desértico , Ecossistema
8.
PeerJ ; 2: e690, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538868

RESUMO

Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.

9.
PLoS One ; 8(7): e68025, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844147

RESUMO

Wide-ranging species cannot persist in reserves alone. Consequently, there is growing interest in the conservation value of agricultural lands that separate or buffer natural areas. The value of agricultural lands for wildlife habitat and connectivity varies as a function of the crop type and landscape context, and quantifying these differences will improve our ability to manage these lands more effectively for animals. In southern California, many species are present in avocado orchards, including mammalian carnivores. We examined occupancy of avocado orchards by mammalian carnivores across agricultural-wildland gradients in southern California with motion-activated cameras. More carnivore species were detected with cameras in orchards than in wildland sites, and for bobcats and gray foxes, orchards were associated with higher occupancy rates. Our results demonstrate that agricultural lands have potential to contribute to conservation by providing habitat or facilitating landscape connectivity.


Assuntos
Agricultura/métodos , Carnívoros/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Persea/fisiologia , Animais , California , Carnívoros/classificação , Raposas/fisiologia , Geografia , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie
10.
Glob Chang Biol ; 19(2): 473-83, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23504785

RESUMO

Recent studies suggest that species distribution models (SDMs) based on fine-scale climate data may provide markedly different estimates of climate-change impacts than coarse-scale models. However, these studies disagree in their conclusions of how scale influences projected species distributions. In rugged terrain, coarse-scale climate grids may not capture topographically controlled climate variation at the scale that constitutes microhabitat or refugia for some species. Although finer scale data are therefore considered to better reflect climatic conditions experienced by species, there have been few formal analyses of how modeled distributions differ with scale. We modeled distributions for 52 plant species endemic to the California Floristic Province of different life forms and range sizes under recent and future climate across a 2000-fold range of spatial scales (0.008-16 km(2) ). We produced unique current and future climate datasets by separately downscaling 4 km climate models to three finer resolutions based on 800, 270, and 90 m digital elevation models and deriving bioclimatic predictors from them. As climate-data resolution became coarser, SDMs predicted larger habitat area with diminishing spatial congruence between fine- and coarse-scale predictions. These trends were most pronounced at the coarsest resolutions and depended on climate scenario and species' range size. On average, SDMs projected onto 4 km climate data predicted 42% more stable habitat (the amount of spatial overlap between predicted current and future climatically suitable habitat) compared with 800 m data. We found only modest agreement between areas predicted to be stable by 90 m models generalized to 4 km grids compared with areas classified as stable based on 4 km models, suggesting that some climate refugia captured at finer scales may be missed using coarser scale data. These differences in projected locations of habitat change may have more serious implications than net habitat area when predictive maps form the basis of conservation decision making.


Assuntos
Mudança Climática , Plantas , Biodiversidade , California , Previsões
11.
Mol Ecol ; 19(17): 3806-23, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20723054

RESUMO

Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata Née, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions.


Assuntos
Mudança Climática , Variação Genética , Genética Populacional , Quercus/genética , California , DNA de Cloroplastos/genética , DNA de Plantas/genética , Ecologia/métodos , Genótipo , Geografia , Repetições de Microssatélites , Modelos Biológicos
12.
Mol Ecol ; 17(1): 139-56, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17868293

RESUMO

California valley oak (Quercus lobata Née) is a seriously threatened endemic oak species in California and a keystone species for foothill oak ecosystems. Urban and agricultural development affects a significant fraction of the species' range and predicted climate change is likely to dislocate many current populations. Here, we explore spatial patterns of multivariate genotypes and genetic diversity throughout the range of valley oak to determine whether ongoing and future patterns of habitat loss could threaten the evolutionary potential of the species by eradicating populations of distinctive genetic composition. This manuscript will address three specific questions: (i) What is the spatial genetic structure of the chloroplast and nuclear genetic markers? (ii) What are the geographical trends in the distribution of chloroplast and nuclear genotypes? (iii) Is there any part of the species' range where allelic diversity in either the chloroplast or nuclear genomes is particularly high? We analysed six chloroplast and seven nuclear microsatellite genetic markers of individuals widespread across the valley oak range. We then used a multivariate approach correlating genetic markers and geographical variables through a canonical trend surface analysis, followed by GIS mapping of the significant axes. We visualized population allelic richness spatially with GIS tools to identify regions of high diversity. Our findings, based on the distribution of multivariate genotypes and allelic richness, identify areas with distinctive histories and genetic composition that should be given priority in reserve network design, especially because these areas also overlap with landscape change and little degree of protection. Thus, without a careful preservation plan, valuable evolutionary information will be lost for valley oak.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Genótipo , Quercus/genética , California , DNA de Cloroplastos/genética , Frequência do Gene , Sistemas de Informação Geográfica , Geografia , Repetições de Microssatélites/genética , Análise Multivariada , Dinâmica Populacional , Análise de Sequência de DNA
13.
Ecol Appl ; 17(8): 2195-213, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18213963

RESUMO

We analyzed recent survey data and mapped environmental variables integrated over a home range scale of 10 km2 to model the distribution of fisher (Martes pennanti) habitat in California, USA. Our goal was to identify habitat factors associated with the current distribution of fishers in California, and to test whether those factors differ for widely disjunct northern and southern populations. Our analyses were designed to probe whether poor habitat quality can explain the current absence of fishers in the historically occupied central and northern Sierra Nevada region that separates these two populations. Fishers were detected at 64/433 (14.8%) sample units, including 35/111 (32%) of sample units in the Klamath/Shasta region and 28/88 (32%) of sample units in the southern Sierra Nevada. Generalized additive models (GAM) that included mean annual precipitation, topographic relief, forest structure, and a spatial autocovariate term best predicted fisher detections over the species' recent historical range in California. Models derived using forest structure data from ground plots were comparable to models derived from Landsat Thematic Mapper imagery. Models for the disjunct Klamath/Cascades and southern Sierra Nevada populations selected different environmental factors and showed low agreement in the spatial pattern of model predictions. Including a spatial autocovariate term significantly improved model fits for all models except the southern Sierra Nevada. We cannot rule out dispersal or habitat in explaining the absence of fishers in the northern and central Sierra Nevada, but mapped habitat quality is low over much of the region. Landscapes with good fisher habitat may exist in rugged forested canyons of the currently unoccupied northern Sierra Nevada, but these areas are fragmented and at least 60 km from the nearest recent fisher detections.


Assuntos
Ecossistema , Modelos Biológicos , Mustelidae/fisiologia , Animais , California , Conservação dos Recursos Naturais , Demografia , Monitoramento Ambiental
14.
Q Rev Biol ; 81(2): 127-52, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16776062

RESUMO

We review published studies on the demography and recruitment of California oak trees and focus on the widespread dominant species of the foothill woodlands, Quercus douglasii, Q. lobata, and Q. agrifolia, to ascertain the nature and strength of evidence for a decline in populations of these species. The vast majority of studies have been of short duration (less than three years), focused on the acorn and seedling life stages, and conducted at few locations within each species geographic range. We summarize the extensive body of research that has been conducted on the biological and physical factors that limit natural seedling recruitment of oaks. The oak "regeneration problem" has largely been inferred from current stand structure rather than by demographic analyses, which in part reflects the short-term nature of most oak research. When viewed over longer periods of time usingfield surveys or historical photos, the evidence for a regeneration problem in foothill oaks is mixed. Q. douglasii shows very limited seedling or sapling recruitment at present, but longer term studies do not suggest a decline in tree density, presumably because rare recruitment is sufficient to offset low rates of mortality of overstory individuals. Q. agrifolia appears to be stable or increasing in some areas, but decreasing in areas recently impacted by the disease Phytophthora ramorum. Evidence from the few available studies is more consistent in suggesting long-term declines in foothill populations of Q. lobata. Long-term monitoring, age structure analysis, and population models are needed to resolve the current uncertainty over the sustainability of oak woodlands in California.


Assuntos
Quercus , Animais , California , Ecossistema , Fertilidade , Incêndios , Frutas , Insetos , Doenças das Plantas , Poaceae , Quercus/classificação , Quercus/crescimento & desenvolvimento , Chuva , Plântula/crescimento & desenvolvimento , Solo , Árvores/crescimento & desenvolvimento
15.
Am J Bot ; 92(2): 252-61, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21652402

RESUMO

California Valley oak (Quercus lobata), one of the state's most distinctive oak species, has experienced serious demographic attrition since the 19th century, due to human activities. Recent estimates of pollen dispersal suggest a small reproductive neighborhood. Whether small neighborhood size is a recent phenomenon, a consequence of reduced gene flow caused by demographic changes, or whether it has been historically restricted, remains unclear. To examine this question, we have characterized the spatial genetic structure of N = 191 Q. lobata individuals, spread over an area of 230 ha, using eight microsatellite loci. The observed autocorrelogram suggests an historical standard deviation of gene flow distance of about 350 m per generation, higher than contemporary pollen dispersal estimates. To determine whether our estimates were affected by strong prevailing winds from the west-northwest, we developed and utilized a novel anisotropic autocorrelation analysis. We detected no more than a hint of anisotropy, and we concluded that adult spatial structure is indicative of strong historical signature of "isolation by distance." This historical estimate provides a useful reference value against which to gauge the future gene flow consequences of ongoing anthropogenic disturbance.

16.
Environ Manage ; 29(4): 545-58, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12071504

RESUMO

Evaluating the characteristics of a set of sites as potential scientific research reserves is an example of land suitability assessment. Suitability in this case is based upon multiple criteria, many of which can be linguistically imprecise and often incompatible. Fuzzy logic is a useful method for characterizing imprecise suitability criteria and for combining criteria into an overall suitability rating. The Ecosystem Management Decision Support software combined a fuzzy logic knowledge base we developed to represent the assessment problem with a GIS database providing site-specific data for the assessment. Assessment of sites as a potential natural reserve for the new University of California campus at Merced demonstrates the benefits of fuzzy suitability assessment. The study was conducted in three stages of successively smaller assessment regions with increasingly fine spatial resolution and specificity of criteria. Several sites were identified that best satisfy the suitability criteria for a reserve to represent vernal pool habitat.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Lógica Fuzzy , Bases de Dados Factuais , Ecossistema , Previsões , Geografia , Sistemas de Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA