Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Science ; 382(6676): 1276-1281, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096384

RESUMO

The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens.


Assuntos
Galinhas , Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas/virologia , Herpesvirus Galináceo 2/classificação , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/patogenicidade , Linfoma/virologia , Doença de Marek/história , Doença de Marek/virologia , Virulência/genética , Filogenia
2.
Front Toxicol ; 5: 1178482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124970

RESUMO

The importance of the cladoceran Daphnia as a model organism for ecotoxicity testing has been well-established since the 1980s. Daphnia have been increasingly used in standardised testing of chemicals as they are well characterised and show sensitivity to pollutants, making them an essential indicator species for environmental stress. The mapping of the genomes of D. pulex in 2012 and D. magna in 2017 further consolidated their utility for ecotoxicity testing, including demonstrating the responsiveness of the Daphnia genome to environmental stressors. The short lifecycle and parthenogenetic reproduction make Daphnia useful for assessment of developmental toxicity and adaption to stress. The emergence of nanomaterials (NMs) and their safety assessment has introduced some challenges to the use of standard toxicity tests which were developed for soluble chemicals. NMs have enormous reactive surface areas resulting in dynamic interactions with dissolved organic carbon, proteins and other biomolecules in their surroundings leading to a myriad of physical, chemical, biological, and macromolecular transformations of the NMs and thus changes in their bioavailability to, and impacts on, daphnids. However, NM safety assessments are also driving innovations in our approaches to toxicity testing, for both chemicals and other emerging contaminants such as microplastics (MPs). These advances include establishing more realistic environmental exposures via medium composition tuning including pre-conditioning by the organisms to provide relevant biomolecules as background, development of microfluidics approaches to mimic environmental flow conditions typical in streams, utilisation of field daphnids cultured in the lab to assess adaption and impacts of pre-exposure to pollution gradients, and of course development of mechanistic insights to connect the first encounter with NMs or MPs to an adverse outcome, via the key events in an adverse outcome pathway. Insights into these developments are presented below to inspire further advances and utilisation of these important organisms as part of an overall environmental risk assessment of NMs and MPs impacts, including in mixture exposure scenarios.

3.
Science ; 377(6611): 1172-1180, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074859

RESUMO

Donkeys transformed human history as essential beasts of burden for long-distance movement, especially across semi-arid and upland environments. They remain insufficiently studied despite globally expanding and providing key support to low- to middle-income communities. To elucidate their domestication history, we constructed a comprehensive genome panel of 207 modern and 31 ancient donkeys, as well as 15 wild equids. We found a strong phylogeographic structure in modern donkeys that supports a single domestication in Africa ~5000 BCE, followed by further expansions in this continent and Eurasia and ultimately returning to Africa. We uncover a previously unknown genetic lineage in the Levant ~200 BCE, which contributed increasing ancestry toward Asia. Donkey management involved inbreeding and the production of giant bloodlines at a time when mules were essential to the Roman economy and military.


Assuntos
Domesticação , Equidae , Genoma , África , Animais , Ásia , Equidae/classificação , Equidae/genética , Genômica , Humanos , Filogenia
4.
Biol Lett ; 17(7): 20210222, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34256582

RESUMO

Mummified remains have long attracted interest as a potential source of ancient DNA. However, mummification is a rare process that requires an anhydrous environment to rapidly dehydrate and preserve tissue before complete decomposition occurs. We present the whole-genome sequences (3.94 X) of an approximately 1600-year-old naturally mummified sheep recovered from Chehrabad, a salt mine in northwestern Iran. Comparative analyses of published ancient sequences revealed the remarkable DNA integrity of this mummy. Hallmarks of postmortem damage, fragmentation and hydrolytic deamination are substantially reduced, likely owing to the high salinity of this taphonomic environment. Metagenomic analyses reflect the profound influence of high-salt content on decomposition; its microbial profile is predominated by halophilic archaea and bacteria, possibly contributing to the remarkable preservation of the sample. Applying population genomic analyses, we find clustering of this sheep with Southwest Asian modern breeds, suggesting ancestry continuity. Genotyping of a locus influencing the woolly phenotype showed the presence of an ancestral 'hairy' allele, consistent with hair fibre imaging. This, along with derived alleles associated with the fat-tail phenotype, provides genetic evidence that Sasanian-period Iranians maintained specialized sheep flocks for different uses, with the 'hairy', 'fat-tailed'-genotyped sheep likely kept by the rural community of Chehrabad's miners.


Assuntos
Múmias , Animais , DNA Antigo , Genoma , Irã (Geográfico) , Fenótipo , Ovinos/genética
5.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34099576

RESUMO

The Aceramic Neolithic (∼9600 to 7000 cal BC) period in the Zagros Mountains, western Iran, provides some of the earliest archaeological evidence of goat (Capra hircus) management and husbandry by circa 8200 cal BC, with detectable morphological change appearing ∼1,000 y later. To examine the genomic imprint of initial management and its implications for the goat domestication process, we analyzed 14 novel nuclear genomes (mean coverage 1.13X) and 32 mitochondrial (mtDNA) genomes (mean coverage 143X) from two such sites, Ganj Dareh and Tepe Abdul Hosein. These genomes show two distinct clusters: those with domestic affinity and a minority group with stronger wild affinity, indicating that managed goats were genetically distinct from wild goats at this early horizon. This genetic duality, the presence of long runs of homozygosity, shared ancestry with later Neolithic populations, a sex bias in archaeozoological remains, and demographic profiles from across all layers of Ganj Dareh support management of genetically domestic goat by circa 8200 cal BC, and represent the oldest to-this-date reported livestock genomes. In these sites a combination of high autosomal and mtDNA diversity, contrasting limited Y chromosomal lineage diversity, an absence of reported selection signatures for pigmentation, and the wild morphology of bone remains illustrates domestication as an extended process lacking a strong initial bottleneck, beginning with spatial control, demographic manipulation via biased male culling, captive breeding, and subsequently phenotypic and genomic selection.


Assuntos
Domesticação , Genoma , Cabras/genética , Animais , Animais Domésticos/genética , Arqueologia , DNA Mitocondrial/genética , Feminino , Marcadores Genéticos , Variação Genética , Genômica , Geografia , Haplótipos/genética , Irã (Geográfico) , Masculino , Mitocôndrias/genética , Seleção Genética , Cromossomo Y/genética
6.
Science ; 365(6449): 173-176, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31296769

RESUMO

Genome-wide analysis of 67 ancient Near Eastern cattle, Bos taurus, remains reveals regional variation that has since been obscured by admixture in modern populations. Comparisons of genomes of early domestic cattle to their aurochs progenitors identify diverse origins with separate introgressions of wild stock. A later region-wide Bronze Age shift indicates rapid and widespread introgression of zebu, Bos indicus, from the Indus Valley. This process was likely stimulated at the onset of the current geological age, ~4.2 thousand years ago, by a widespread multicentury drought. In contrast to genome-wide admixture, mitochondrial DNA stasis supports that this introgression was male-driven, suggesting that selection of arid-adapted zebu bulls enhanced herd survival. This human-mediated migration of zebu-derived genetics has continued through millennia, altering tropical herding on each continent.


Assuntos
Bovinos/genética , Domesticação , Animais , DNA Mitocondrial/genética , Evolução Molecular , Fertilidade , Genoma , Genômica , Migração Humana
7.
Cell ; 177(6): 1419-1435.e31, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31056281

RESUMO

Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management.


Assuntos
Cavalos/genética , Animais , Ásia , Evolução Biológica , Cruzamento/história , DNA Antigo/análise , Domesticação , Equidae/genética , Europa (Continente) , Feminino , Variação Genética/genética , Genoma/genética , História Antiga , Masculino , Filogenia
8.
Science ; 361(6397): 85-88, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29976826

RESUMO

Current genetic data are equivocal as to whether goat domestication occurred multiple times or was a singular process. We generated genomic data from 83 ancient goats (51 with genome-wide coverage) from Paleolithic to Medieval contexts throughout the Near East. Our findings demonstrate that multiple divergent ancient wild goat sources were domesticated in a dispersed process that resulted in genetically and geographically distinct Neolithic goat populations, echoing contemporaneous human divergence across the region. These early goat populations contributed differently to modern goats in Asia, Africa, and Europe. We also detect early selection for pigmentation, stature, reproduction, milking, and response to dietary change, providing 8000-year-old evidence for human agency in molding genome variation within a partner species.


Assuntos
Domesticação , Cabras/genética , Mosaicismo , África , Animais , Animais Domésticos/classificação , Animais Domésticos/genética , Ásia , DNA Antigo , DNA Mitocondrial/genética , Europa (Continente) , Folistatina/genética , Variação Genética , Genoma , Cabras/classificação , Filogenia
9.
Science ; 360(6384): 111-114, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29472442

RESUMO

The Eneolithic Botai culture of the Central Asian steppes provides the earliest archaeological evidence for horse husbandry, ~5500 years ago, but the exact nature of early horse domestication remains controversial. We generated 42 ancient-horse genomes, including 20 from Botai. Compared to 46 published ancient- and modern-horse genomes, our data indicate that Przewalski's horses are the feral descendants of horses herded at Botai and not truly wild horses. All domestic horses dated from ~4000 years ago to present only show ~2.7% of Botai-related ancestry. This indicates that a massive genomic turnover underpins the expansion of the horse stock that gave rise to modern domesticates, which coincides with large-scale human population expansions during the Early Bronze Age.


Assuntos
Cavalos/classificação , Cavalos/genética , Animais , DNA Antigo , Genoma , Cavalos/anatomia & histologia , Fenótipo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA