Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2930, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253742

RESUMO

Extinct lineages of Yersinia pestis, the causative agent of the plague, have been identified in several individuals from Eurasia between 5000 and 2500 years before present (BP). One of these, termed the 'LNBA lineage' (Late Neolithic and Bronze Age), has been suggested to have spread into Europe with human groups expanding from the Eurasian steppe. Here, we show that the LNBA plague was spread to Europe's northwestern periphery by sequencing three Yersinia pestis genomes from Britain, all dating to ~4000 cal BP. Two individuals were from an unusual mass burial context in Charterhouse Warren, Somerset, and one individual was from a single burial under a ring cairn monument in Levens, Cumbria. To our knowledge, this represents the earliest evidence of LNBA plague in Britain documented to date. All three British Yersinia pestis genomes belong to a sublineage previously observed in Bronze Age individuals from Central Europe that had lost the putative virulence factor yapC. This sublineage is later found in Eastern Asia ~3200 cal BP. While the severity of the disease is currently unclear, the wide geographic distribution within a few centuries suggests substantial transmissibility.


Assuntos
Peste , Yersinia pestis , Humanos , Peste/epidemiologia , Yersinia pestis/genética , Reino Unido/epidemiologia , Europa (Continente) , Ásia Oriental
2.
Curr Biol ; 33(7): 1365-1371.e3, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36963383

RESUMO

Ancient DNA has revealed multiple episodes of admixture in human prehistory during geographic expansions associated with cultural innovations. One important example is the expansion of Neolithic agricultural groups out of the Near East into Europe and their consequent admixture with Mesolithic hunter-gatherers.1,2,3,4 Ancient genomes from this period provide an opportunity to study the role of admixture in providing new genetic variation for selection to act upon, and also to identify genomic regions that resisted hunter-gatherer introgression and may thus have contributed to agricultural adaptations. We used genome-wide DNA from 677 individuals spanning Mesolithic and Neolithic Europe to infer ancestry deviations in the genomes of admixed individuals and to test for natural selection after admixture by testing for deviations from a genome-wide null distribution. We find that the region around the pigmentation-associated gene SLC24A5 shows the greatest overrepresentation of Neolithic local ancestry in the genome (|Z| = 3.46). In contrast, we find the greatest overrepresentation of Mesolithic ancestry across the major histocompatibility complex (MHC; |Z| = 4.21), a major immunity locus, which also shows allele frequency deviations indicative of selection following admixture (p = 1 × 10-56). This could reflect negative frequency-dependent selection on MHC alleles common in Neolithic populations or that Mesolithic alleles were positively selected for and facilitated adaptation in Neolithic populations to pathogens or other environmental factors. Our study extends previous results that highlight immune function and pigmentation as targets of adaptation in more recent populations to selection processes in the Stone Age.


Assuntos
DNA , Fazendeiros , Humanos , Europa (Continente) , Alelos , Seleção Genética
3.
Science ; 370(6516): 557-564, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33122379

RESUMO

Dogs were the first domestic animal, but little is known about their population history and to what extent it was linked to humans. We sequenced 27 ancient dog genomes and found that all dogs share a common ancestry distinct from present-day wolves, with limited gene flow from wolves since domestication but substantial dog-to-wolf gene flow. By 11,000 years ago, at least five major ancestry lineages had diversified, demonstrating a deep genetic history of dogs during the Paleolithic. Coanalysis with human genomes reveals aspects of dog population history that mirror humans, including Levant-related ancestry in Africa and early agricultural Europe. Other aspects differ, including the impacts of steppe pastoralist expansions in West and East Eurasia and a near-complete turnover of Neolithic European dog ancestry.


Assuntos
Animais Domésticos/genética , Cães/genética , Lobos/genética , África , Animais , Domesticação , Europa (Continente) , Genômica , População
4.
Biochim Biophys Acta Gen Subj ; 1862(11): 2427-2432, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29859258

RESUMO

In the last two decades, genomic analyses have enriched the study of the biology of selenium in many ways. These include the identification of selenoproteins in prokaryotic and eukaryotic genomes, the discovery of genetic variants that mediate humans and other vertebrates' adaptations to their selenium nutritional histories, and the association of specific genotypes with common and rare human selenium disorders. We briefly review these computational, evolutionary and association studies and their contribution to the genomics of selenium, selenocysteine and selenoproteins in the 200th anniversary of the discovery of this trace element.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA