Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0299703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630707

RESUMO

Vascular cognitive impairment (VCI) is the second leading cause of dementia with limited treatment options, characterised by cerebral hypoperfusion-induced white matter rarefaction (WMR). Subcortical VCI is the most common form of VCI, but the underlying reasons for region susceptibility remain elusive. Recent studies employing the bilateral cortical artery stenosis (BCAS) method demonstrate that various inflammasomes regulate white matter injury and blood-brain barrier dysfunction but whether caspase-1 inhibition will be beneficial remains unclear. To address this, we performed BCAS on C57/BL6 mice to study the effects of Ac-YVAD-cmk, a caspase-1 inhibitor, on the subcortical and cortical regions. Cerebral blood flow (CBF), WMR, neuroinflammation and the expression of tight junction-related proteins associated with blood-brain barrier integrity were assessed 15 days post BCAS. We observed that Ac-YVAD-cmk restored CBF, attenuated BCAS-induced WMR and restored subcortical myelin expression. Within the subcortical region, BCAS activated the NLRP3/caspase-1/interleukin-1beta axis only within the subcortical region, which was attenuated by Ac-YVAD-cmk. Although we observed that BCAS induced significant increases in VCAM-1 expression in both brain regions that were attenuated with Ac-YVAD-cmk, only ZO-1 and occludin were observed to be significantly altered in the subcortical region. Here we show that caspase-1 may contribute to subcortical regional susceptibility in a mouse model of VCI. In addition, our results support further investigations into the potential of Ac-YVAD-cmk as a novel treatment strategy against subcortical VCI and other conditions exhibiting cerebral hypoperfusion-induced WMR.


Assuntos
Clorometilcetonas de Aminoácidos , Disfunção Cognitiva , Substância Branca , Animais , Camundongos , Substância Branca/metabolismo , Encéfalo/metabolismo , Caspase 1/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765085

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are the most commonly used psychopharmaceutical treatment for major depressive disorder (MDD), but individual responses to SSRIs vary greatly. CYP2C19 is a key enzyme involved in the metabolism of several drugs, including SSRIs. Variations in the CYP2C19 gene are associated with differential metabolic activity, and thus differential SSRI exposure; accordingly, the CYP2C19 genotype may affect the therapeutic response and clinical outcomes, though existing evidence of this link is not entirely consistent. Therefore, we analysed data from the UK Biobank, a large, deeply phenotyped prospective study, to investigate the effects of CYP2C19 metaboliser phenotypes on several clinical outcomes derived from primary care records, including multiple measures of antidepressant switching, discontinuation, duration, and side effects. In this dataset, 24,729 individuals were prescribed citalopram, 3012 individuals were prescribed escitalopram, and 12,544 individuals were prescribed sertraline. Consistent with pharmacological expectations, CYP2C19 poor metabolisers on escitalopram were more likely to switch antidepressants, have side effects following first prescription, and be on escitalopram for a shorter duration compared to normal metabolisers. CYP2C19 poor and intermediate metabolisers on citalopram also exhibited increased odds of discontinuation and shorter durations relative to normal metabolisers. Generally, no associations were found between metabolic phenotypes and proxies of response to sertraline. Sensitivity analyses in a depression subgroup and metabolic activity scores corroborated results from the primary analysis. In summary, our findings suggest that CYP2C19 genotypes, and thus metabolic phenotypes, may have utility in determining clinical responses to SSRIs, particularly escitalopram and citalopram, though further investigation of such a relationship is warranted.

3.
Neurosci Biobehav Rev ; 131: 429-450, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537263

RESUMO

The relaxin-3/RXFP3 system is one of several neuropeptidergic systems putatively implicated in regulating the behavioural alterations that characterise clinical depression and anxiety, making it a potential target for clinical translation. Accordingly, this systematic review identified published reports on the role of relaxin-3/RXFP3 signalling in these neuropsychiatric disorders and their behavioural endophenotypes, evaluating evidence from animal and human studies to ascertain any relationship. We searched PubMed, EMBASE, PsycINFO and Google Scholar databases up to February 2021, finding 609 relevant records. After stringent screening, 51 of these studies were included in the final synthesis. There was considerable heterogeneity in study designs and some inconsistency across study outcomes. However, experimental evidence is consistent with an ability of relaxin-3/RXFP3 signalling to promote arousal and suppress depressive- and anxiety-like behaviour. Moreover, meta-analyses of six to eight articles investigating food intake revealed that acute RXFP3 activation had strong orexigenic effects in rats. This appraisal also identified the lack of high-quality clinical studies pertinent to the relaxin-3/RXFP3 system, a gap that future research should attempt to bridge.


Assuntos
Ansiedade , Depressão , Receptores Acoplados a Proteínas G/fisiologia , Relaxina/fisiologia , Animais , Humanos , Ratos , Receptores de Peptídeos , Relaxina/genética , Transdução de Sinais
4.
Adv Mater ; 32(29): e2001459, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32484308

RESUMO

Near-infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless-based phototherapies by converting deep-tissue-penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep-sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA-approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5-aminolevulinic acid (5-ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR-based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep-tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep-tissue light delivery.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Fotoquimioterapia/instrumentação , Polietilenoglicóis/química , Tecnologia sem Fio , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Camundongos , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
5.
Br J Pharmacol ; 176(20): 3899-3923, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31220339

RESUMO

BACKGROUND AND PURPOSE: Depression and anxiety are common causes of disability, and innovative tools and potential pharmacological targets are actively sought for prevention and treatment. Therapeutic strategies targeting the relaxin-3 peptide or its primary endogenous receptor, RXFP3, for the treatment of major depression and anxiety disorders have been limited by a lack of compounds with drug-like properties. We proposed that a hydrocarbon-stapled mimetic of relaxin-3, when administered intranasally, might be uniquely applicable to the treatment of these disorders. EXPERIMENTAL APPROACH: We designed a series of hydrocarbon-stapled relaxin-3 mimetics and identified the most potent compound using in vitro receptor binding and activation assays. Further, we assessed the effect of intranasal delivery of relaxin-3 and the lead stapled mimetic in rat models of anxiety and depression. KEY RESULTS: We developed an i,i+7 stapled relaxin-3 mimetic that manifested a stabilized α-helical structure, proteolytic resistance, and confirmed agonist activity in receptor binding and activation in vitro assays. The stapled peptide agonist enhanced food intake after intracerebral infusion in rats, confirming in vivo activity. We showed that intranasal delivery of the lead i,i+7 stapled peptide or relaxin-3 had orexigenic effects in rats, indicating a potential clinically translatable route of delivery. Further, intranasal administration of the lead i,i+7 stapled peptide exerted anxiolytic and antidepressant-like activity in anxiety- and depression-related behaviour paradigms. CONCLUSIONS AND IMPLICATIONS: Our preclinical findings demonstrate that targeting the relaxin-3/RXFP3 receptor system via intranasal delivery of an i,i+7 stapled relaxin-3 mimetic may represent an effective treatment approach for depression, anxiety, and related neuropsychiatric disorders.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Administração Intranasal , Animais , Ansiolíticos/administração & dosagem , Ansiolíticos/química , Antidepressivos/administração & dosagem , Antidepressivos/química , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/administração & dosagem , Receptores Acoplados a Proteínas G/química
6.
Peptides ; 84: 44-57, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27498038

RESUMO

Relaxin-3 or insulin-like peptide 7 (INSL7) is the most recently discovered relaxin/insulin-like family peptide. Mature relaxin-3 consists of an A chain and a B chain held by disulphide bonds. According to structure activity relationship studies, the relaxin-3 B chain is more important in binding and activating the receptor. RXFP3 (also known as Relaxin-3 receptor 1, GPCR 135, somatostatin- and angiotensin- like peptide receptor or SALPR) was identified as the cognate receptor for relaxin-3 by expression profiles and binding studies. Recent studies imply roles of this system in mediating stress and anxiety, feeding, metabolism and cognition. Stapling of peptides is a technique used to develop peptide drugs for otherwise undruggable targets. The main advantages of stapling include, increased activity due to reduced proteolysis, increased affinity to receptors and increased cell permeability. Stable agonists and antagonists of RXFP3 are crucial for understanding the physiological significance of this system. So far, agonists and antagonists of RXFP3 are peptides. In this study, for the first time, we have introduced stapling of the relaxin-3 B chain at 14th and 18th positions (14s18) and 18th and 22nd position (18s22). These stapled peptides showed greater helicity than the unstapled relaxin-3 B chain in circular dichroism analysis. Both stapled peptides bound RXFP3 and activated RXFP3 as observed in an inhibition of forskolin-induced cAMP assay and a ERK1/2 activation assay, although with different potencies. Therefore, we conclude that stapling of the relaxin3 B chain does not compromise its ability to activate RXFP3 and is a promising method for developing stable peptide agonists and antagonists of RXFP3 to aid relaxin-3/RXFP3 research.


Assuntos
Peptídeos/genética , Receptores Acoplados a Proteínas G/genética , Relaxina/genética , Colforsina/farmacologia , AMP Cíclico/biossíntese , Células HEK293 , Humanos , Hidrocarbonetos/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos/química , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/química , Relaxina/metabolismo , Relação Estrutura-Atividade
7.
IEEE Trans Biomed Circuits Syst ; 8(4): 528-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25073128

RESUMO

A novel signal folding and reconstruction scheme for neural recording applications that exploits the 1/f(n) characteristics of neural signals is described in this paper. The amplified output is 'folded' into a predefined range of voltages by using comparison and reset circuits along with the core amplifier. After this output signal is digitized and transmitted, a reconstruction algorithm can be applied in the digital domain to recover the amplified signal from the folded waveform. This scheme enables the use of an analog-to-digital convertor with less number of bits for the same effective dynamic range. It also reduces the transmission data rate of the recording chip. Both of these features allow power and area savings at the system level. Other advantages of the proposed topology are increased reliability due to the removal of pseudo-resistors, lower harmonic distortion and low-voltage operation. An analysis of the reconstruction error introduced by this scheme is presented along with a behavioral model to provide a quick estimate of the post reconstruction dynamic range. Measurement results from two different core amplifier designs in 65 nm and 180 nm CMOS processes are presented to prove the generality of the proposed scheme in the neural recording applications. Operating from a 1 V power supply, the amplifier in 180 nm CMOS has a gain of 54.2 dB, bandwidth of 5.7 kHz, input referred noise of 3.8 µVrms and power dissipation of 2.52 µW leading to a NEF of 3.1 in spike band. It exhibits a dynamic range of 66 dB and maximum SNDR of 43 dB in LFP band. It also reduces system level power (by reducing the number of bits in the ADC by 2) as well as data rate to 80% of a conventional design. In vivo measurements validate the ability of this amplifier to simultaneously record spike and LFP signals.


Assuntos
Amplificadores Eletrônicos , Neurônios/fisiologia , Conversão Análogo-Digital , Animais , Eletrodos Implantados , Eletrônica Médica/instrumentação , Ratos , Ratos Sprague-Dawley
8.
Nat Commun ; 5: 3176, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24458027

RESUMO

Sorting nexin 27 (SNX27), a PDZ domain-containing endosomal protein, was recently shown to modulate glutamate receptor recycling in Down's syndrome. However, the precise molecular role of SNX27 in GluA1 trafficking is unclear. Here we report that SNX27 is enriched in dendrites and spines, along with recycling endosomes. Significantly, the mobilization of SNX27 along with recycling endosomes into spines was observed. Mechanistically, SNX27 interacts with K-ras GTPase via the RA domain; and following chemical LTP stimuli, K-ras is recruited to SNX27-enriched endosomes through a Ca(2+)/CaM-dependent mechanism, which in turn drives the synaptic delivery of homomeric GluA1 receptors. Impairment of SNX27 prevents LTP and associated trafficking of AMPARs. These results demonstrate a role for SNX27 in neuronal plasticity, provide a molecular explanation for the K-ras signal during LTP and identify SNX27 as the PDZ-containing molecular linker that couples the plasticity stimuli to the delivery of postsynaptic cargo.


Assuntos
Receptores de AMPA/metabolismo , Nexinas de Classificação/fisiologia , Animais , Humanos , Camundongos , Camundongos Knockout , Transporte Proteico
9.
Stem Cells ; 32(6): 1636-48, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24449409

RESUMO

Neural stem cells (NSCs) and neural progenitors (NPs) in the mammalian neocortex give rise to the main cell types of the nervous system. The biological behavior of these NSCs and NPs is regulated by extracellular niche derived autocrine-paracrine signaling factors on a developmental timeline. Our previous reports [Plos One 2010;5:e15341; J Neurochem 2011;117:565-578] have shown that chondroitin sulfate proteoglycan and ApolipoproteinE are autocrine-paracrine survival factors for NSCs. NogoA, a myelin related protein, is expressed in the cortical ventricular zones where NSCs reside. However, the functional role of Nogo signaling proteins in NSC behavior is not completely understood. In this study, we show that NogoA receptors, NogoR1 and PirB, are expressed in the ventricular zone where NSCs reside between E10.5 and 14.5 but not at E15.5. Nogo ligands stimulate NSC survival and proliferation in a dosage-dependent manner in vitro. NogoR1 and PirB are low and high affinity Nogo receptors, respectively and are responsible for the effects of Nogo ligands on NSC behavior. Inhibition of autocrine-paracrine Nogo signaling blocks NSC survival and proliferation. In NSCs, NogoR1 functions through Rho whereas PirB uses Shp1/2 signaling pathways to control NSC behavior. Taken together, this work suggests that Nogo signaling is an important pathway for survival of NSCs.


Assuntos
Proteínas da Mielina/metabolismo , Células-Tronco Neurais/citologia , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Apolipoproteínas E/metabolismo , Comunicação Autócrina/efeitos dos fármacos , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Tamanho Celular , Sobrevivência Celular/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Embrião de Mamíferos/citologia , Feminino , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , Proteínas da Mielina/deficiência , Proteínas da Mielina/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Proteínas Nogo , Receptor Nogo 1 , Comunicação Parácrina/efeitos dos fármacos , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Receptores de Superfície Celular/deficiência , Receptores Imunológicos/deficiência , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
10.
Brain Res ; 1543: 179-90, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24287211

RESUMO

The nucleus incertus (NI), a brainstem nucleus found in the pontine periventricular grey, is the primary source of the neuropeptide relaxin-3 in the mammalian brain. The NI neurons have also been previously reported to express several receptors and neurotransmitters, including corticotropin releasing hormone receptor 1 (CRF1) and gamma-aminobutyric acid (GABA). The NI projects widely to putative neural correlates of stress, anxiety, depression, feeding behaviour, arousal and cognition leading to speculation that it might be involved in several neuropsychiatric conditions. On the premise that relaxin-3 expressing neurons in the NI predominantly co-express CRF1 receptors, a novel method for selective ablation of the rat brain NI neurons using corticotropin releasing factor (CRF)-saporin conjugate is described. In addition to a behavioural deficit in the fear conditioning paradigm, reverse transcriptase polymerase chain reaction (RT-PCR), western blotting (WB) and immunofluorescence labelling (IF) techniques were used to confirm the NI lesion. We observed a selective and significant loss of CRF1 expressing cells, together with a consistent decrease in relaxin-3 and GAD65 expression. The significant ablation of relaxin-3 positive neurons of the NI achieved by this lesioning approach is a promising model to explore the neuropsychopharmacological implications of NI/relaxin-3 in behavioural neuroscience.


Assuntos
Hormônio Liberador da Corticotropina/toxicidade , Imunotoxinas/toxicidade , Ponte/lesões , Relaxina/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/toxicidade , Animais , Condicionamento Psicológico/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Eletrochoque/efeitos adversos , Medo/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Ponte/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Relaxina/genética , Saporinas , Fatores de Tempo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
11.
Eur J Neurosci ; 38(4): 2516-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23668693

RESUMO

The medial prefrontal cortex (mPFC) in the rat has been implicated in a variety of cognitive processes, including working memory and expression of fear memory. We investigated the inputs from a brain stem nucleus, the nucleus incertus (NI), to the prelimbic area of the mPFC. This nucleus strongly expresses corticotropin-releasing factor type 1 (CRF1 ) receptors and responds to stress. A retrograde tracer was used to verify connections from the NI to the mPFC. Retrogradely labelled cells in the NI expressed CRF receptors. Electrophysiological manipulation of the NI revealed that stimulation of the NI inhibited spontaneous neuronal firing in the mPFC. Similarly, CRF infusion into the NI, in order to mimic a stressful condition, inhibited neuronal firing and burst firing in the mPFC. The effect of concurrent high-frequency stimulation of the NI on plasticity in the hippocampo-prelimbic medial prefrontal cortical (HP-mPFC) pathway was studied. It was found that electrical stimulation of the NI impaired long-term potentiation in the HP-mPFC pathway. Furthermore, CRF infusion into the NI produced similar results. These findings might account for some of the extra-pituitary functions of CRF and indicate that the NI may play a role in stress-driven modulation of working memory and possibly other cognitive processes subserved by the mPFC.


Assuntos
Tronco Encefálico/fisiologia , Hormônio Liberador da Corticotropina/farmacologia , Hipocampo/fisiologia , Potenciação de Longa Duração , Inibição Neural , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Hormônio Liberador da Corticotropina/administração & dosagem , Hipocampo/efeitos dos fármacos , Infusões Parenterais , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Vias Neurais , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
12.
PLoS One ; 8(4): e60200, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23573240

RESUMO

Parkinson's disease (PD), characterized by loss of dopaminergic neurons in the substantia nigra, is a neurodegenerative disorder of central nervous system. The present study was designed to investigate the therapeutic effect of ACS84, a hydrogen sulfide-releasing-L-Dopa derivative compound, in a 6-hydroxydopamine (6-OHDA)-induced PD model. ACS84 protected the SH-SY5Y cells against 6-OHDA-induced cell injury and oxidative stress. The protective effect resulted from stimulation of Nrf-2 nuclear translocation and promotion of anti-oxidant enzymes expression. In the 6-OHDA-induced PD rat model, intragastric administration of ACS84 relieved the movement dysfunction of the model animals. Immunofluorescence staining and High-performance liquid chromatography analysis showed that ACS84 alleviated the loss of tyrosine-hydroxylase positive neurons in the substantia nigra and the declined dopamine concentration in the injured striatums of the 6-OHDA-induced PD model. Moreover, ACS84 reversed the elevated malondialdehyde level and the decreased glutathione level in vivo. In conclusion, ACS84 may prevent neurodegeneration via the anti-oxidative mechanism and has potential therapeutic values for Parkinson's disease.


Assuntos
Antioxidantes/uso terapêutico , Antiparkinsonianos/uso terapêutico , Dissulfetos/uso terapêutico , Levodopa/análogos & derivados , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antiparkinsonianos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Indução Enzimática/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo , Oxidopamina , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Ratos , Ratos Sprague-Dawley , Elementos de Resposta , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
13.
Hippocampus ; 23(7): 616-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23520012

RESUMO

A priming-challenge schedule of nicotine treatment causes long-lasting potentiation (LLP), a form of synaptic plasticity closely associated with the norepinephrine (NE) neurotransmitter system, at the medial perforant path (MPP)-dentate gyrus (DG) synapse in the rat hippocampus. Previous reports revealed that nicotine activates the locus coeruleus (LC) noradrenergic (NAergic) system and this mechanism may underlie its beta-adrenoceptor sensitive LLP effects. Clozapine, an atypical antipsychotic, is also known to activate the LC. Interactions between nicotine and clozapine are of interest because of the prevalence of smoking in patients with schizophrenia and increasing interest in the use of nicotinic receptor ligands as cognitive enhancers. Rats were subchronically primed with nicotine, clozapine or saline. Twenty-one to twenty-eight days later, the effects of the nicotine, clozapine or saline challenge on the evoked field excitatory postsynaptic potentials (fEPSP) at the MPP-DG monosynaptic pathway were recorded as a measure of LLP. We confirmed the hypothesis that a challenge dose of either nicotine or clozapine induces LLP exclusively in nicotine- and clozapine-primed rats, and not in saline-primed rats, thus indicating a cross-priming effect. Moreover, unilateral suppression of LC using lidocaine abolished the LLP induced by nicotine in clozapine-primed rats. Furthermore, systemic treatment with clonidine (an α2 adrenoceptor agonist that reduces NAergic activity via autoreceptors) prior to the challenge doses blocked the nicotine/clozapine-induced LLP in nicotine- and clozapine-primed rats. These findings may add to understanding of the cognitive enhancing effects of nicotine.


Assuntos
Clozapina/administração & dosagem , Hipocampo/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Animais , Antipsicóticos/administração & dosagem , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Locus Cerúleo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
14.
Brain Res ; 1508: 34-43, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23499563

RESUMO

A number of atypical antipsychotic drugs are known to perturb appetite regulation causing greater hyperphagia in humans and rodents than earlier generation typical agents. However, the neuronal structures that underlie hyperphagic effects are poorly understood. Arcuate nucleus (ArcN), paraventricular hypothalamic nucleus (PVN), paraventricular thalamic nucleus (PVA) and nucleus incertus (NI) have been implicated in appetite regulation. The NI is the principal source of the relaxin-3 (RLN3) peptide, which is reported to have orexigenic effects. Moreover, ArcN, PVN, and PVA receive RLN3 immunoreactive fibers from the NI and express relaxin family peptide type 3 (RXFP3) receptor. The present study was designed to evaluate the acute effects of clozapine (atypical), chlorpromazine (typical) and fluphenazine (typical) on c-Fos expression (a marker of neuronal response) in these appetite-related centers of the rat brain. The numbers of c-Fos expressing neurons in these structures were counted in immunofluorescence stained brain sections. Acute treatment with clozapine, chlorpromazine and fluphenazine differentially influenced c-Fos expression in these brain structures. This study is also the first demonstration that antipsychotics influence the NI. The patterns of the effects of these antipsychotics are related to their reported hyperphagic properties.


Assuntos
Antipsicóticos/farmacologia , Apetite/efeitos dos fármacos , Apetite/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Genes fos/efeitos dos fármacos , Análise de Variância , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/metabolismo
15.
J Neurosci ; 33(1): 334-43, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23283346

RESUMO

The aberrant hyperactivation of Cyclin-dependent kinase 5 (Cdk5), by the production of its truncated activator p25, results in the formation of hyperphosphorylated tau, neuroinflammation, amyloid deposition, and neuronal death in vitro and in vivo. Mechanistically, this occurs as a result of a neurotoxic insult that invokes the intracellular elevation of calcium to activate calpain, which cleaves the Cdk5 activator p35 into p25. It has been shown previously that the p25 transgenic mouse as a model to investigate the mechanistic implications of p25 production in the brain, which recapitulates deregulated Cdk5-mediated neuropathological changes, such as hyperphosphorylated tau and neuronal death. To date, strategies to inhibit Cdk5 activity have not been successful in targeting selectively aberrant activity without affecting normal Cdk5 activity. Here we show that the selective inhibition of p25/Cdk5 hyperactivation in vivo, through overexpression of the Cdk5 inhibitory peptide (CIP), rescues against the neurodegenerative pathologies caused by p25/Cdk5 hyperactivation without affecting normal neurodevelopment afforded by normal p35/Cdk5 activity. Tau and amyloid pathologies as well as neuroinflammation are significantly reduced in the CIP-p25 tetra transgenic mice, whereas brain atrophy and subsequent cognitive decline are reversed in these mice. The findings reported here represent an important breakthrough in elucidating approaches to selectively inhibit the p25/Cdk5 hyperactivation as a potential therapeutic target to reduce neurodegeneration.


Assuntos
Encéfalo/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Degeneração Neural/genética , Neurônios/metabolismo , Animais , Apoptose/genética , Atrofia/genética , Atrofia/metabolismo , Atrofia/patologia , Comportamento Animal/fisiologia , Encéfalo/patologia , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/patologia , Fosforilação , Proteínas tau/metabolismo
16.
IEEE Trans Biomed Circuits Syst ; 7(6): 735-46, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24473539

RESUMO

Neural prosthetics and personal healthcare have increasing need of high channel density low noise low power neural sensor interfaces. The input referred noise and quantization resolution are two essential factors which prevent conventional neural sensor interfaces from simultaneously achieving a good noise efficiency factor and low power consumption. In this paper, a neural recording architecture with dynamic range folding and current reuse techniques is proposed and dedicated to solving the noise and dynamic range trade-off under low voltage low power operation. Measured results from the silicon prototype show that the proposed design achieves 3.2 µVrms input referred noise and 8.27 effective number of bits at only 0.45 V supply and 0.94 µW/channel power consumption.


Assuntos
Técnicas de Diagnóstico Neurológico/instrumentação , Eletrodos Implantados , Sistemas Microeletromecânicos/instrumentação , Semicondutores , Processamento de Sinais Assistido por Computador/instrumentação , Animais , Desenho de Equipamento , Próteses Neurais , Ratos , Ratos Sprague-Dawley , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA