Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
JCI Insight ; 8(10)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37129980

RESUMO

Elevated blood glucose levels, or hyperglycemia, can increase brain excitability and amyloid-ß (Aß) release, offering a mechanistic link between type 2 diabetes and Alzheimer's disease (AD). Since the cellular mechanisms governing this relationship are poorly understood, we explored whether ATP-sensitive potassium (KATP) channels, which couple changes in energy availability with cellular excitability, play a role in AD pathogenesis. First, we demonstrate that KATP channel subunits Kir6.2/KCNJ11 and SUR1/ABCC8 were expressed on excitatory and inhibitory neurons in the human brain, and cortical expression of KCNJ11 and ABCC8 changed with AD pathology in humans and mice. Next, we explored whether eliminating neuronal KATP channel activity uncoupled the relationship between metabolism, excitability, and Aß pathology in a potentially novel mouse model of cerebral amyloidosis and neuronal KATP channel ablation (i.e., amyloid precursor protein [APP]/PS1 Kir6.2-/- mouse). Using both acute and chronic paradigms, we demonstrate that Kir6.2-KATP channels are metabolic sensors that regulate hyperglycemia-dependent increases in interstitial fluid levels of Aß, amyloidogenic processing of APP, and amyloid plaque formation, which may be dependent on lactate release. These studies identify a potentially new role for Kir6.2-KATP channels in AD and suggest that pharmacological manipulation of Kir6.2-KATP channels holds therapeutic promise in reducing Aß pathology in patients with diabetes or prediabetes.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Hiperglicemia , Humanos , Camundongos , Animais , Canais KATP/metabolismo , Doença de Alzheimer/patologia , Diabetes Mellitus Tipo 2/complicações , Glucose , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
2.
Neurobiol Dis ; 177: 105967, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535550

RESUMO

Epidemiological studies identified alcohol use disorder (AUD) as a risk factor for Alzheimer's disease (AD), yet there is conflicting evidence on how alcohol use promotes AD pathology. In this study, a 10-week moderate two-bottle choice drinking paradigm was used to identify how chronic ethanol exposure alters amyloid-ß (Aß)-related pathology, metabolism, and behavior. Ethanol-exposed APPswe/PSEN1dE9 (APP/PS1) mice showed increased brain atrophy and an increased number of amyloid plaques. Further analysis revealed that ethanol exposure led to a shift in the distribution of plaque size in the cortex and hippocampus. Ethanol-exposed mice developed a greater number of smaller plaques, potentially setting the stage for increased plaque proliferation in later life. Ethanol drinking APP/PS1 mice also exhibited deficits in nest building, a metric of self-care, as well as increased locomotor activity and central zone exploration in an open field test. Ethanol exposure also led to a diurnal shift in feeding behavior which was associated with changes in glucose homeostasis and glucose intolerance. Complementary in vivo microdialysis experiments were used to measure how acute ethanol directly modulates Aß in the hippocampal interstitial fluid (ISF). Acute ethanol transiently increased hippocampal ISF glucose levels, suggesting that ethanol directly affects cerebral metabolism. Acute ethanol also selectively increased ISF Aß40, but not ISF Aß42, levels during withdrawal. Lastly, chronic ethanol drinking increased N-methyl-d-aspartate receptor (NMDAR) and decreased γ-aminobutyric acid type-A receptor (GABAAR) mRNA levels, indicating a potential hyperexcitable shift in the brain's excitatory/inhibitory (E/I) balance. Collectively, these experiments suggest that ethanol may increase Aß deposition by disrupting metabolism and the brain's E/I balance. Furthermore, this study provides evidence that a moderate drinking paradigm culminates in an interaction between alcohol use and AD-related phenotypes with a potentiation of AD-related pathology, behavioral dysfunction, and metabolic impairment.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Etanol/toxicidade , Glucose/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos , Placa Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
3.
Neuropsychopharmacology ; 47(6): 1256-1262, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33854202

RESUMO

While non-suicidal self-injury (NSSI) occurs in the general population at a surprisingly high rate, with higher rates among certain clinical  populations, its etiology is not well-understood. Consequently, the DSM-5 lists NSSI as requiring further research. This study utilizes a translational model of naturally-occurring NSSI to assess the role of early parental neglect and variation in the serotonin transporter genotype (5-HTT) in the etiology of NSSI. Subjects (N = 161) were rhesus macaques (Macaca mulatta) reared in one of three conditions (mother-reared (MR), peer-reared (PR), or surrogate peer-reared (SPR)), and classified as NSSI (n = 18) or non-NSSI (n = 143). Subjects were genotyped for 5-HTT and their behaviors were recorded during an ecologically-meaningful, stress-evoking, intruder paradigm. Two weeks prior to testing, blood samples were obtained and assayed for plasma cortisol and adrenocorticotropic hormone (ACTH) concentrations. NSSI subjects were more likely to be SPR, paralleling human studies showing that individuals that exhibit NSSI tend to have experienced abuse or neglect early in life. Results also indicated that variation in the 5-HTT genotype differentiated the NSSI subjects. NSSI subjects that were homozygous for the L allele exhibited high plasma ACTH and high rates of stress-induced stereotypies; whereas NSSI subjects with the s allele exhibited impulsive behaviors, including frequently approaching the potentially dangerous intruder, high rates of aggressive vocal threats, and more activity. These results suggest that there may be different 5-HTT genotype-mediated NSSI typologies and that both early experiences and variation in the 5-HTT genotype may be important factors in understanding the etiology of NSSI.


Assuntos
Comportamento Autodestrutivo , Proteínas da Membrana Plasmática de Transporte de Serotonina , Hormônio Adrenocorticotrópico , Animais , Genótipo , Humanos , Macaca mulatta/genética , Comportamento Autodestrutivo/genética , Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
4.
Neurobiol Stress ; 13: 100254, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344709

RESUMO

Persistent psychological stress increases the risk of many chronic diseases of aging. Little progress has been made to effectively reduce stress responses or mitigate stress effects suggesting a need for better understanding of factors that influence stress responses. Limited evidence suggests that diet may be a factor in modifying the effects of stress. However, long-term studies of diet effects on stress reactive systems are not available, and controlled randomized clinical trials are difficult and costly. Here we report the outcomes of a controlled, randomized preclinical trial of the effects of long-term consumption (31 months, ~ equivalent to 9 human years) of Western versus Mediterranean - like diets on behavioral and physiological responses to acute (brief social separation) and chronic (social subordination) psychosocial stress in 38 adult, socially-housed, female cynomolgus macaques. Compared to animals fed a Western diet, those fed the Mediterranean diet exhibited enhanced stress resilience as indicated by lower sympathetic activity, brisker and more overt heart rate responses to acute stress, more rapid recovery, and lower cortisol responses to acute psychological stress and adrenocorticotropin (ACTH) challenge. Furthermore, age-related increases in sympathetic activity and cortisol responses to stress were delayed by the Mediterranean diet. Population level diet modification in humans has been shown to be feasible. Our findings suggest that population-wide adoption of a Mediterranean-like diet pattern may provide a cost-effective intervention on psychological stress and promote healthy aging with the potential for widespread efficacy.

5.
Front Neurosci ; 13: 843, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555072

RESUMO

Epidemiological studies suggest that individuals with type 2 diabetes (T2D) have a twofold to fourfold increased risk for developing Alzheimer's disease (AD), however, the exact mechanisms linking the two diseases are unknown. In both conditions, the majority of pathophysiological changes, including glucose and insulin dysregulation, insulin resistance, and AD-related changes in Aß and tau, occur decades before the onset of clinical symptoms and diagnosis. In this study, we investigated the relationship between metabolic biomarkers associated with T2D and amyloid pathology including Aß levels, from cerebrospinal fluid (CSF) and fasting plasma of healthy, pre-diabetic (PreD), and T2D vervet monkeys (Chlorocebus aethiops sabaeus). Consistent with the human disease, T2D monkeys have increased plasma and CSF glucose levels as they transition from normoglycemia to PreD and diabetic states. Although plasma levels of acylcarnitines and amino acids remained largely unchanged, peripheral hyperglycemia correlated with decreased CSF acylcarnitines and CSF amino acids, including branched chain amino acid (BCAA) concentrations, suggesting profound changes in cerebral metabolism coincident with systemic glucose dysregulation. Moreover, CSF Aß 40 and CSF Aß 42 levels decreased in T2D monkeys, a phenomenon observed in the human course of AD which coincides with increased amyloid deposition within the brain. In agreement with previous studies in mice, CSF Aß 40 and CSF Aß 42 were highly correlated with CSF glucose levels, suggesting that glucose levels in the brain are associated with changes in Aß metabolism. Interestingly, CSF Aß 40 and CSF Aß 42 levels were also highly correlated with plasma but not CSF lactate levels, suggesting that plasma lactate might serve as a potential biomarker of disease progression in AD. Moreover, CSF glucose and plasma lactate levels were correlated with CSF amino acid and acylcarnitine levels, demonstrating alterations in cerebral metabolism occurring with the onset of T2D. Together, these data suggest that peripheral metabolic changes associated with the development of T2D produce alterations in brain metabolism that lead to early changes in the amyloid cascade, similar to those observed in pre-symptomatic AD.

6.
eNeuro ; 6(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040160

RESUMO

Currently there is no effective therapy available for cognitive impairments in Down syndrome (DS), one of the most prevalent forms of intellectual disability in humans associated with the chromosomes 21 trisomy. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that maintains glucose homeostasis by stimulating insulin secretion. Its natural cleavage product GLP-1 (9-36) lacks insulinotropic effects and has a low binding affinity for GLP-1 receptors; thus, GLP-1 (9-36) has historically been identified as an inactive metabolite. Conversely, recent work has demonstrated interesting physiological properties of GLP-1 (9-36) such as cardioprotection and neuroprotection. We have previously shown that GLP-1 (9-36) administration enhances neuronal plasticity in young WT mice and ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Here, we report that systemic administration of GLP-1 (9-36) in Ts65Dn DS model mice of either sex resulted in decreased mitochondrial oxidative stress in hippocampus and improved dendritic spine morphology, increase of mature spines and reduction of immature spines. Importantly, these molecular alterations translated into functional changes in that long-term potentiation failure and cognitive impairments in TsDn65 DS model mice were rescued with GLP-1 (9-36) treatment. We also show that chronic GLP-1 (9-36) treatment did not alter glucose tolerance in either WT or DS model mice. Our findings suggest that GLP-1 (9-36) treatment may have therapeutic potential for DS and other neurodegenerative diseases associated with increased neuronal oxidative stress.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Espinhas Dendríticas/efeitos dos fármacos , Síndrome de Down/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Nootrópicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Transgênicos , Nootrópicos/administração & dosagem
8.
Hippocampus ; 27(12): 1264-1274, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28833775

RESUMO

Glucagon-like peptide-1 (GLP-1) is an endogenous gut hormone and a key regulator in maintaining glucose homeostasis by stimulating insulin secretion. Its natural cleavage product GLP-1 (9-36), used to be considered a "bio-inactive" metabolite mainly because of its lack of insulinotropic effects and low affinity for GLP-1 receptors, possesses unique properties such as anti-oxidant and cardiovascular protection. Little is known about the role of GLP-1 (9-36) in central nervous system. Here we report that chronic, systemic application of GLP-1 (9-36) in adult mice facilitated both the induction and maintenance phases of hippocampal long-term potentiation (LTP), a major form of synaptic plasticity. In contrast, spatial learning and memory, as assessed by the Morris water maze test, was not altered by GLP-1 (9-36) administration. At the molecular level, GLP-1 (9-36) reduced protein levels of the potassium channel Kv4.2 in hippocampus, which is linked to elevated dendritic membrane excitability. Moreover, GLP-1(9-36) treatment inhibited phosphorylation of mRNA translational factor eEF2, which is associated with increased capacity for de novo protein synthesis. Finally, we showed that the LTP-enhancing effects by GLP-1 (9-36) treatment in vivo were blunted by application of exendin(9-39)amide [EX(9-39)], the GLP-1 receptor (GLP-1R) antagonist, suggesting its role as a GLP-1R agonist. These findings demonstrate that GLP-1 (9-36), which was considered a "bio-inactive" peptide, clearly exerts physiological effects on neuronal plasticity in the hippocampus, a brain region critical for learning and memory.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Potássio Shal/metabolismo , Animais , Western Blotting , Fármacos do Sistema Nervoso Central/administração & dosagem , Feminino , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Peptídeos/administração & dosagem , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Técnicas de Cultura de Tecidos
9.
Neurobiol Stress ; 1: 156-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27589665

RESUMO

Overall health has been linked to socioeconomic status, with the gap between social strata increasing each year. Studying the impact of social position on health and biological functioning in nonhuman primates has allowed researchers to model the human condition while avoiding ethical complexities or other difficulties characteristic of human studies. Using female cynomolgus macaques (Macaca fascicularis), our lab has examined the link between social status and stress for 30 years. Female nonhuman primates are especially sensitive to social stressors which can deleteriously affect reproductive health, leading to harmful consequences to their overall health. Subordinates have lower progesterone concentrations during the luteal phase of menstrual cycle, which is indicative of absence or impairment of ovulation. Subordinate animals receive more aggression, less affiliative attention, and are more likely to exhibit depressive behaviors. They also express higher stress-related biomarkers such as increased heart rates and lower mean cortisol. While no differences in body weight between dominant and subordinate animals are observed, subordinates have lower bone density and more visceral fat than their dominant counterparts. The latter increases risk for developing inflammatory diseases. Differences are also observed in neurological and autonomic function. A growing body of data suggests that diet composition may amplify or diminish physiological stress responses which have deleterious effects on health. More experimental investigation of the health effects of diet pattern is needed to further elucidate these differences in an ongoing search to find realistic and long-term solutions to the declining health of individuals living across the ever widening socioeconomic spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA