Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACR Open Rheumatol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952080

RESUMO

OBJECTIVE: In the face of the ongoing circulation of SARS-CoV-2, the durability of neutralization post-COVID-19 vaccination in immune-mediated inflammatory disease (IMID) is a key issue, as are the effects of medications. METHODS: Adults (n = 112) with inflammatory bowel disease, psoriasis/psoriatic arthritis, rheumatoid arthritis, spondylarthritis, and systemic lupus were recruited from participating Canadian medical centers from 2021 to 2023. We focused on log-transformed neutralization (lentivirus methods) as a continuous outcome, with separate models for wild-type and Omicron strains BA.1 and BA.5. RESULTS: Compared with 30 to 120 days postvaccination, subsequent periods were associated with greater neutralization in unadjusted models for wild-type, BA.1, and BA.5 strains and against the BA.1 strain in adjusted models. Rituximab was associated with lower neutralization for the BA.1 strain in adjusted models, with a similar trend for BA.5. In methotrexate users, there were trends for less neutralization of BA.1 and BA.5 in all unadjusted models, whereas in adjusted models, there was significantly lower neutralization only for the wild type. Three or more doses and Omicron-specific vaccines were both independently associated with better neutralization ability for all three strains. A COVID-19 infection within six months before sampling was associated with higher neutralization of wild type and BA.1 in adjusted analyses. Anti-tumor necrosis factor agents were associated with lower neutralization ability for BA.5 in adjusted analyses. CONCLUSION: Neutralization responses in immunosuppressed individuals with IMID were durable over time and were augmented by more than three doses and Omicron-specific vaccines. Less neutralization was seen with certain medications. Our work clarifies the joint effects of vaccine history, infection, and medications on COVID-19 immunity.

2.
J Rheumatol ; 51(7): 721-727, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621797

RESUMO

OBJECTIVE: To determine how serologic responses to coronavirus disease 2019 (COVID-19) vaccination and infection in immune-mediated inflammatory disease (IMID) are affected by time since last vaccination and other factors. METHODS: Post-COVID-19 vaccination, data, and dried blood spots or sera were collected from adults with rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis and spondylarthritis, and psoriasis and psoriatic arthritis. The first sample was collected at enrollment, then at 2 to 4 weeks and 3, 6, and 12 months after the latest vaccine dose. Multivariate generalized estimating equation regressions (including medications, demographics, and vaccination history) evaluated serologic response, based on log-transformed anti-receptor-binding domain (RBD) IgG titers; we also measured antinucleocapsid (anti-N) IgG. RESULTS: Positive associations for log-transformed anti-RBD titers were seen with female sex, number of doses, and self-reported COVID-19 infections in 2021 to 2023. Negative associations were seen with prednisone, anti-tumor necrosis factor agents, and rituximab. Over the 2021-2023 period, most (94%) of anti-N positivity was associated with a self-reported infection in the 3 months prior to testing. From March 2021 to February 2022, anti-N positivity was present in 5% to 15% of samples and was highest in the post-Omicron era, with antinucleocapsid positivity trending to 30% to 35% or higher as of March 2023. Anti-N positivity in IMID remained lower than Canada's general population seroprevalence (> 50% in 2022 and > 75% in 2023). Time since last vaccination was negatively associated with log-transformed anti-RBD titers, particularly after 210 days. CONCLUSION: Ours is the first pan-Canadian IMID assessment of how vaccine history and other factors affect serologic COVID-19 vaccine responses. These findings may help individuals personalize vaccination decisions, including consideration of additional vaccination when > 6 months has elapsed since last COVID-19 vaccination/infection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Feminino , Masculino , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/epidemiologia , Pessoa de Meia-Idade , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Adulto , Idoso , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacinação , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/sangue , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/sangue
3.
BMC Infect Dis ; 24(1): 125, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302878

RESUMO

BACKGROUND: Accurate estimation of SARS-CoV-2 re-infection is crucial to understanding the connection between infection burden and adverse outcomes. However, relying solely on PCR testing results in underreporting. We present a novel approach that includes longitudinal serologic data, and compared it against testing alone among people experiencing homelessness. METHODS: We recruited 736 individuals experiencing homelessness in Toronto, Canada, between June and September 2021. Participants completed surveys and provided saliva and blood serology samples every three months over 12 months of follow-up. Re-infections were defined as: positive PCR or rapid antigen test (RAT) results > 90 days after initial infection; new serologic evidence of infection among individuals with previous infection who sero-reverted; or increases in anti-nucleocapsid in seropositive individuals whose levels had begun to decrease. RESULTS: Among 381 participants at risk, we detected 37 re-infections through PCR/RAT and 98 re-infections through longitudinal serology. The comprehensive method identified 37.4 re-infection events per 100 person-years, more than four-fold more than the rate detected through PCR/RAT alone (9.0 events/100 person-years). Almost all test-confirmed re-infections (85%) were also detectable by longitudinal serology. CONCLUSIONS: Longitudinal serology significantly enhances the detection of SARS-CoV-2 re-infections. Our findings underscore the importance and value of combining data sources for effective research and public health surveillance.


Assuntos
COVID-19 , Pessoas Mal Alojadas , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/genética , Reinfecção , Canadá/epidemiologia
4.
J Immunol ; 211(3): 351-364, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326480

RESUMO

Previous studies have reported impaired humoral responses after SARS-CoV-2 mRNA vaccination in patients with immune-mediated inflammatory diseases (IMIDs), particularly those treated with anti-TNF biologics. We previously reported that IMID patients diagnosed with inflammatory bowel disease, psoriasis, psoriatic arthritis, ankylosing spondylitis, or rheumatoid arthritis exhibited greater waning of Ab and T cell responses than healthy control subjects after SARS-CoV-2 vaccine dose 2. Fewer data are available on the effects of third and fourth doses. This observational cohort study collected plasma and PBMCs from healthy control subjects and untreated or treated patients with IMIDs prevaccination and after one to four doses of SARS-CoV-2 mRNA vaccine (BNT162b2 or mRNA-1273). SARS-CoV-2-specific Ab levels, neutralization, and T cell cytokine release were measured against wild-type and Omicron BA.1 and BA.5 variants of concern. Third vaccine doses substantially restored and prolonged Ab and T cell responses in patients with IMIDs and broadened responses against variants of concern. Fourth-dose effects were subtle but also prolonged Ab responses. However, patients with IMIDs treated with anti-TNF, especially patients with inflammatory bowel disease, exhibited lower Ab responses even after the fourth dose. Although T cell IFN-γ responses were maximal after one dose, IL-2 and IL-4 production increased with successive doses, and early production of these cytokines was predictive of neutralization responses at 3-4 mo postvaccination. Our study demonstrates that third and fourth doses of the SARS-CoV-2 mRNA vaccines sustain and broaden immune responses to SARS-CoV-2, supporting the recommendation for three- and four-dose vaccination regimens in patients with IMIDs.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Vacinas , Humanos , Adulto , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , Agentes de Imunomodulação , Inibidores do Fator de Necrose Tumoral , COVID-19/prevenção & controle , Vacinação , Citocinas , Anticorpos Antivirais
5.
Methods Mol Biol ; 2692: 121-137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37365465

RESUMO

Cells such as macrophages and neutrophils can internalize a diverse set of particulate matter, illustrated by bacteria and apoptotic bodies through the process of phagocytosis. These particles are sequestered into phagosomes, which then fuse with early and late endosomes and ultimately with lysosomes to mature into phagolysosomes, through a process known as phagosome maturation. Ultimately, after particle degradation, phagosomes then fragment to reform lysosomes through phagosome resolution. As phagosomes change, they acquire and divest proteins that are associated with the various stages of phagosome maturation and resolution. These changes can be assessed at the single-phagosome level by using immunofluorescence methods. Typically, we use indirect immunofluorescence methods that rely on primary antibodies against specific molecular markers that track phagosome maturation. Commonly, progression of phagosomes into phagolysosomes can be determined by staining cells for Lysosomal-Associated Membrane Protein I (LAMP1) and measuring the fluorescence intensity of LAMP1 around each phagosome by microscopy or flow cytometry. However, this method can be used to detect any molecular marker for which there are compatible antibodies for immunofluorescence.


Assuntos
Fagocitose , Fagossomos , Fagossomos/metabolismo , Macrófagos/metabolismo , Lisossomos/metabolismo , Imunofluorescência , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo
6.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471956

RESUMO

BACKGROUNDLimited information is available on the impact of immunosuppressants on COVID-19 vaccination in patients with immune-mediated inflammatory diseases (IMID).METHODSThis observational cohort study examined the immunogenicity of SARS-CoV-2 mRNA vaccines in adult patients with inflammatory bowel disease, rheumatoid arthritis, ankylosing spondylitis, or psoriatic disease, with or without maintenance immunosuppressive therapies. Ab and T cell responses to SARS-CoV-2, including neutralization against SARS-CoV-2 variants, were determined before and after 1 and 2 vaccine doses.RESULTSWe prospectively followed 150 subjects, 26 healthy controls, 9 patients with IMID on no treatment, 44 on anti-TNF, 16 on anti-TNF with methotrexate/azathioprine (MTX/AZA), 10 on anti-IL-23, 28 on anti-IL-12/23, 9 on anti-IL-17, and 8 on MTX/AZA. Ab and T cell responses to SARS-CoV-2 were detected in all participants, increasing from dose 1 to dose 2 and declining 3 months later, with greater attrition in patients with IMID compared with healthy controls. Ab levels and neutralization efficacy against variants of concern were substantially lower in anti-TNF-treated patients than in healthy controls and were undetectable against Omicron by 3 months after dose 2.CONCLUSIONSOur findings support the need for a third dose of the mRNA vaccine and for continued monitoring of immunity in these patient groups.FUNDINGFunded by a donation from Juan and Stefania Speck and by Canadian Institutes of Health (CIHR)/COVID-Immunity Task Force (CITF) grants VR-1 172711 and VS1-175545 (to THW and ACG), CIHR FDN-143250 (to THW), GA2-177716 (to VC, ACG, and THW), and GA1-177703 (to ACG) and the CIHR rapid response network to SARS-CoV-2 variants, CoVaRR-Net (to ACG).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Canadá , Humanos , SARS-CoV-2 , Inibidores do Fator de Necrose Tumoral , Vacinas Sintéticas , Vacinas de mRNA
7.
Sci Rep ; 9(1): 17768, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780775

RESUMO

Cellular uptake is limiting for the efficacy of many cytotoxic drugs used to treat cancer. Identifying endocytic mechanisms that can be modulated with targeted, clinically-relevant interventions is important to enhance the efficacy of various cancer drugs. We identify that flotillin-dependent endocytosis can be targeted and upregulated by ultrasound and microbubble (USMB) treatments to enhance uptake and efficacy of cancer drugs such as cisplatin. USMB involves targeted ultrasound following administration of encapsulated microbubbles, used clinically for enhanced ultrasound image contrast. USMB treatments robustly enhanced internalization of the molecular scaffold protein flotillin, as well as flotillin-dependent fluid-phase internalization, a phenomenon dependent on the protein palmitoyltransferase DHHC5 and the Src-family kinase Fyn. USMB treatment enhanced DNA damage and cell killing elicited by the cytotoxic agent cisplatin in a flotillin-dependent manner. Thus, flotillin-dependent endocytosis can be modulated by clinically-relevant USMB treatments to enhance drug uptake and efficacy, revealing an important new strategy for targeted drug delivery for cancer treatment.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Endocitose , Proteínas de Membrana/metabolismo , Microbolhas , Antineoplásicos/farmacocinética , Linhagem Celular , Linhagem Celular Tumoral , Cisplatino/farmacocinética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ondas Ultrassônicas
8.
J Cell Sci ; 131(10)2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29661845

RESUMO

Lysosomes receive and degrade cargo from endocytosis, phagocytosis and autophagy. They also play an important role in sensing and instructing cells on their metabolic state. The lipid kinase PIKfyve generates phosphatidylinositol-3,5-bisphosphate to modulate lysosome function. PIKfyve inhibition leads to impaired degradative capacity, ion dysregulation, abated autophagic flux and a massive enlargement of lysosomes. Collectively, this leads to various physiological defects, including embryonic lethality, neurodegeneration and overt inflammation. The reasons for such drastic lysosome enlargement remain unclear. Here, we examined whether biosynthesis and/or fusion-fission dynamics contribute to swelling. First, we show that PIKfyve inhibition activates TFEB, TFE3 and MITF, enhancing lysosome gene expression. However, this did not augment lysosomal protein levels during acute PIKfyve inhibition, and deletion of TFEB and/or related proteins did not impair lysosome swelling. Instead, PIKfyve inhibition led to fewer but enlarged lysosomes, suggesting that an imbalance favouring lysosome fusion over fission causes lysosome enlargement. Indeed, conditions that abated fusion curtailed lysosome swelling in PIKfyve-inhibited cells.


Assuntos
Lisossomos/química , Lisossomos/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Íons/metabolismo , Lisossomos/genética , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo
9.
J Immunol ; 199(6): 2096-2105, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28779020

RESUMO

Neutrophils rapidly arrive at an infection site because of their unparalleled chemotactic ability, after which they unleash numerous attacks on pathogens through degranulation and reactive oxygen species (ROS) production, as well as by phagocytosis, which sequesters pathogens within phagosomes. Phagosomes then fuse with lysosomes and granules to kill the enclosed pathogens. A complex signaling network composed of kinases, GTPases, and lipids, such as phosphoinositides, helps to coordinate all of these processes. There are seven species of phosphoinositides that are interconverted by lipid kinases and phosphatases. PIKfyve is a lipid kinase that generates phosphatidylinositol-3,5-bisphosphate and, directly or indirectly, phosphatidylinositol-5-phosphate [PtdIns(5)P]. PIKfyve inactivation causes massive lysosome swelling, disrupts membrane recycling, and, in macrophages, blocks phagosome maturation. In this study, we explored for the first time, to our knowledge, the role of PIKfyve in human and mouse neutrophils. We show that PIKfyve inhibition in neutrophils does not affect granule morphology or degranulation, but it causes LAMP1+ lysosomes to engorge. Additionally, PIKfyve inactivation blocks phagosome-lysosome fusion in a manner that can be rescued, in part, with Ca2+ ionophores or agonists of TRPML1, a lysosomal Ca2+ channel. Strikingly, PIKfyve is necessary for chemotaxis, ROS production, and stimulation of the Rac GTPases, which control chemotaxis and ROS. This is consistent with observations in nonleukocytes that showed that PIKfyve and PtdIns(5)P control Rac and cell migration. Overall, we demonstrate that PIKfyve has a robust role in neutrophils and propose a model in which PIKfyve modulates phagosome maturation through phosphatidylinositol-3,5-bisphosphate-dependent activation of TRPML1, whereas chemotaxis and ROS are regulated by PtdIns(5)P-dependent activation of Rac.


Assuntos
Lisossomos/metabolismo , Neutrófilos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Aminopiridinas/farmacologia , Animais , Degranulação Celular , Células Cultivadas , Quimiotaxia , GTP Fosfo-Hidrolases/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Hidrazonas , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Fusão de Membrana , Camundongos , Camundongos Endogâmicos , Morfolinas/farmacologia , Fagocitose , Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinas , Espécies Reativas de Oxigênio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Triazinas/farmacologia
10.
Mol Biol Cell ; 28(21): 2802-2818, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28814502

RESUMO

Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca2+, or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca2+- and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes.


Assuntos
Endocitose/fisiologia , Receptores ErbB/metabolismo , Fosfolipases Tipo C/metabolismo , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Humanos , Receptores da Transferrina/metabolismo , Epitélio Pigmentado da Retina , Transdução de Sinais
11.
Mol Biol Cell ; 28(1): 161-172, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035047

RESUMO

Phosphoinositides (PIPs) are key regulators of membrane traffic and signaling. The interconversion of PIPs by lipid kinases and phosphatases regulates their functionality. Phosphatidylinositol (PI) and PIPs have a unique enrichment of 1-stearoyl-2-arachidonyl acyl species; however, the regulation and function of this specific acyl profile remains poorly understood. We examined the role of the PI acyltransferase LYCAT in control of PIPs and PIP-dependent membrane traffic. LYCAT silencing selectively perturbed the levels and localization of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol-3-phosphate and the membrane traffic dependent on these specific PIPs but was without effect on phosphatidylinositol-4-phosphate or biosynthetic membrane traffic. The acyl profile of PI(4,5)P2 was selectively altered in LYCAT-deficient cells, whereas LYCAT localized with phosphatidylinositol synthase. We propose that LYCAT remodels the acyl chains of PI, which is then channeled into PI(4,5)P2 Our observations suggest that the PIP acyl chain profile may exert broad control of cell physiology.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/fisiologia , Fosfatidilinositóis/metabolismo , Aciltransferases/metabolismo , Aciltransferases/fisiologia , Técnicas de Cultura de Células , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases , Transporte Proteico/fisiologia , Epitélio Pigmentado da Retina
12.
Methods Mol Biol ; 1519: 113-123, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27815876

RESUMO

Cells such as macrophages and neutrophils can internalize a diverse set of particulate matter, illustrated by bacteria and apoptotic bodies through the process of phagocytosis. These particles are sequestered into phagosomes, which then fuse with early and late endosomes, and ultimately with lysosomes to mature into phagolysosomes, through a process known as phagosome maturation. As phagosomes change, they acquire and divest proteins that are associated with the various stages of phagosome maturation. These changes can be assessed at the single-phagosome level by using immunofluorescence methods to study phagosome maturation. Typically, we use indirect immunofluorescence methods that rely on primary antibodies against specific molecular markers that track phagosome maturation. Most commonly, phagosome maturation in macrophages can be determined by staining the cells for Lysosomal-Associated Membrane Protein I (LAMPI) and measuring the fluorescence intensity of LAMPI around each phagosome by microscopy or flow cytometry.


Assuntos
Imunofluorescência/métodos , Fagossomos/metabolismo , Animais , Citometria de Fluxo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Microscopia de Fluorescência , Células RAW 264.7
13.
Curr Biol ; 26(15): 1955-1964, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27397893

RESUMO

Macrophages internalize pathogens through phagocytosis, entrapping them into organelles called phagosomes. Phagosomes then fuse with lysosomes to mature into phagolysosomes, acquiring an acidic and hydrolytic lumen that kills the pathogens. During an ongoing infection, macrophages can internalize dozens of bacteria. Thus, we hypothesized that an initial round of phagocytosis might boost lysosome function and bactericidal ability to cope with subsequent rounds of phagocytosis. To test this hypothesis, we employed Fcγ-receptor-mediated phagocytosis and endocytosis, which internalize immunoglobulin G (IgG)-opsonized particles and polyvalent IgG immune complexes, respectively. We report that Fcγ receptor activation in macrophages enhances lysosome-based proteolysis and killing of subsequently phagocytosed E. coli compared to naive macrophages. Importantly, we show that Fcγ receptor activation causes nuclear translocation of TFEB, a transcription factor that boosts expression of lysosome genes. Indeed, Fc receptor activation is accompanied by increased expression of specific lysosomal proteins. Remarkably, TFEB silencing represses the Fcγ-receptor-mediated enhancements in degradation and bacterial killing. In addition, nuclear translocation of TFEB requires phagosome completion and fails to occur in cells silenced for MCOLN1, a lysosomal Ca(2+) channel, suggesting that lysosomal Ca(2+) released during phagosome maturation activates TFEB. Finally, we demonstrate that non-opsonic phagocytosis of E. coli also enhances lysosomal degradation in a TFEB-dependent manner, suggesting that this phenomenon is not limited to Fcγ receptors. Overall, we show that macrophages become better killers after one round of phagocytosis and suggest that phagosomes and lysosomes are capable of bi-directional signaling.


Assuntos
Antibacterianos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lisossomos/fisiologia , Fagocitose/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Endocitose , Escherichia coli/imunologia , Camundongos , Transporte Proteico , Células RAW 264.7 , Receptores de IgG/genética , Receptores de IgG/metabolismo
14.
Traffic ; 16(9): 1010-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26010303

RESUMO

Macrophages internalize and sequester pathogens into a phagosome. Phagosomes then sequentially fuse with endosomes and lysosomes, converting into degradative phagolysosomes. Phagosome maturation is a complex process that requires regulators of the endosomal pathway including the phosphoinositide lipids. Phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2 ), which respectively control early endosomes and late endolysosomes, are both required for phagosome maturation. Inhibition of PIKfyve, which synthesizes PtdIns(3,5)P2 , blocked phagosome-lysosome fusion and abated the degradative capacity of phagosomes. However, it is not known how PIKfyve and PtdIns(3,5)P2 participate in phagosome maturation. TRPML1 is a PtdIns(3,5)P2 -gated lysosomal Ca(2+) channel. Because Ca(2+) triggers membrane fusion, we postulated that TRPML1 helps mediate phagosome-lysosome fusion. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that silencing of TRPML1 hindered phagosome acquisition of lysosomal markers and reduced the bactericidal properties of phagosomes. Specifically, phagosomes isolated from TRPML1-silenced cells were decorated with lysosomes that docked but did not fuse. We could rescue phagosome maturation in TRPML1-silenced and PIKfyve-inhibited cells by forcible Ca(2+) release with ionomycin. We also provide evidence that cytosolic Ca(2+) concentration increases upon phagocytosis in a manner dependent on TRPML1 and PIKfyve. Overall, we propose a model where PIKfyve and PtdIns(3,5)P2 activate TRPML1 to induce phagosome-lysosome fusion.


Assuntos
Fagossomos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Fagocitose , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Canais de Potencial de Receptor Transitório/genética
15.
Traffic ; 15(10): 1143-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25041080

RESUMO

Macrophages eliminate pathogens and cell debris through phagocytosis, a process by which particulate matter is engulfed and sequestered into a phagosome. Nascent phagosomes are innocuous organelles resembling the plasma membrane. However, through a maturation process, phagosomes are quickly remodeled by fusion with endosomes and lysosomes to form the phagolysosome. Phagolysosomes are highly acidic and degradative leading to particle decomposition. Phagosome maturation is intimately dependent on the endosomal pathway, during which diverse cargoes are sorted for recycling to the plasma membrane or for degradation in lysosomes. Not surprisingly, various regulators of the endosomal pathway are also required for phagosome maturation, including phosphatidylinositol-3-phosphate, an early endosomal regulator. However, phosphatidylinositol-3-phosphate can be modified by the lipid kinase PIKfyve into phosphatidylinositol-3,5-bisphosphate, which controls late endosome/lysosome functions. The role of phosphatidylinositol-3,5-bisphosphate in macrophages and phagosome maturation remains basically unexplored. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that inhibition of PIKfyve hindered certain steps of phagosome maturation. In particular, PIKfyve antagonists delayed removal of phosphatidylinositol-3-phosphate and reduced acquisition of LAMP1 and cathepsin D, both common lysosomal proteins. Consistent with this, the degradative capacity of phagosomes was reduced but phagosomes appeared to still acidify. We also showed that trafficking to lysosomes and their degradative capacity was reduced by PIKfyve inhibition. Overall, we provide evidence that PIKfyve, likely through phosphatidylinositol-3,5-bisphosphate synthesis, plays a significant role in endolysosomal and phagosome maturation in macrophages.


Assuntos
Endossomos/metabolismo , Macrófagos/metabolismo , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aminopiridinas/farmacologia , Animais , Catepsina D/metabolismo , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Fagocitose , Fosfatos de Fosfatidilinositol/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transporte Proteico , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA