Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 226(10): 1743-1752, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543272

RESUMO

BACKGROUND: Laboratory screening for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key mitigation measure to avoid the spread of infection among recruits starting basic combat training in a congregate setting. Because viral nucleic acid can be detected persistently after recovery, we evaluated other laboratory markers to distinguish recruits who could proceed with training from those who were infected. METHODS: Recruits isolated for coronavirus disease 2019 (COVID-19) were serially tested for SARS-CoV-2 subgenomic ribonucleic acid (sgRNA), and viral load (VL) by reverse-transcriptase polymerase chain reaction (RT-PCR), and for anti- SARS-CoV-2. Cluster and quadratic discriminant analyses of results were performed. RESULTS: Among 229 recruits isolated for COVID-19, those with a RT-PCR cycle threshold >30.49 (sensitivity 95%, specificity 96%) or having sgRNA log10 RNA copies/mL <3.09 (sensitivity and specificity 96%) at entry into isolation were likely SARS-CoV-2 uninfected. Viral load >4.58 log10 RNA copies/mL or anti-SARS-CoV-2 signal-to-cutoff ratio <1.38 (VL: sensitivity and specificity 93%; anti-SARS-CoV-2: sensitivity 83%, specificity 79%) had comparatively lower sensitivity and specificity when used alone for discrimination of infected from uninfected. CONCLUSIONS: Orthogonal laboratory assays used in combination with RT-PCR may have utility in determining SARS-CoV-2 infection status for decisions regarding isolation.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Sensibilidade e Especificidade , RNA , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
PLoS Pathog ; 18(5): e1010485, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35587473

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is an important human pathogen. In cell culture, CCHFV is sensed by the cytoplasmic RNA sensor retinoic acid-inducible gene I (RIG-I) molecule and its adaptor molecule mitochondrial antiviral signaling (MAVS) protein. MAVS initiates both type I interferon (IFN-I) and proinflammatory responses. Here, we studied the role MAVS plays in CCHFV infection in mice in both the presence and absence of IFN-I activity. MAVS-deficient mice were not susceptible to CCHFV infection when IFN-I signaling was active and showed no signs of disease. When IFN-I signaling was blocked by antibody, MAVS-deficient mice lost significant weight, but were uniformly protected from lethal disease, whereas all control mice succumbed to infection. Cytokine activity in the infected MAVS-deficient mice was markedly blunted. Subsequent investigation revealed that CCHFV infected mice lacking TNF-α receptor signaling (TNFA-R-deficient), but not IL-6 or IL-1 activity, had more limited liver injury and were largely protected from lethal outcomes. Treatment of mice with an anti-TNF-α neutralizing antibody also conferred partial protection in a post-virus exposure setting. Additionally, we found that a disease causing, but non-lethal strain of CCHFV produced more blunted inflammatory cytokine responses compared to a lethal strain in mice. Our work reveals that MAVS activation and cytokine production both contribute to CCHFV pathogenesis, potentially identifying new therapeutic targets to treat this disease.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Citocinas , Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença , Inibidores do Fator de Necrose Tumoral
3.
Sci Transl Med ; 14(632): eabi5735, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34914540

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 spike ferritin nanoparticle (SpFN) vaccine in nonhuman primates. High-dose (50 µg) SpFN vaccine, given twice 28 days apart, induced a Th1-biased CD4 T cell helper response and elicited neutralizing antibodies against SARS-CoV-2 wild-type and variants of concern, as well as against SARS-CoV-1. These potent humoral and cell-mediated immune responses translated into rapid elimination of replicating virus in the upper and lower airways and lung parenchyma of nonhuman primates following high-dose SARS-CoV-2 respiratory challenge. The immune response elicited by SpFN vaccination and resulting efficacy in nonhuman primates supports the utility of SpFN as a vaccine candidate for SARS-causing betacoronaviruses.


Assuntos
COVID-19 , Nanopartículas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Ferritinas , Humanos , Imunidade , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
4.
NPJ Vaccines ; 6(1): 129, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711815

RESUMO

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.1.7), and Beta (B.1.351) VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose vaccinations. Dose-dependent SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34470866

RESUMO

Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/virologia , Macaca mulatta/imunologia , Nanopartículas/química , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Ferritinas/química , SARS-CoV-2/metabolismo , Linfócitos T/imunologia
6.
bioRxiv ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34159328

RESUMO

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the B.1.1.7 and B.1.351 VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) immunogen dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose two vaccinations. SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

7.
bioRxiv ; 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33851155

RESUMO

Emergence of novel variants of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean neutralizing antibody titers of 14,000-21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within four days in 7 of 8 animals receiving 50 µg RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only ∼2-fold relative to USA-WA1. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-like betacoronavirus vaccine development. SIGNIFICANCE STATEMENT: The emergence of SARS-CoV-2 variants of concern (VOC) that reduce the efficacy of current COVID-19 vaccines is a major threat to pandemic control. We evaluate a SARS-CoV-2 Spike receptor-binding domain ferritin nanoparticle protein vaccine (RFN) in a nonhuman primate challenge model that addresses the need for a next-generation, efficacious vaccine with increased pan-SARS breadth of coverage. RFN, adjuvanted with a liposomal-QS21 formulation (ALFQ), elicits humoral and cellular immune responses exceeding those of current vaccines in terms of breadth and potency and protects against high-dose respiratory tract challenge. Neutralization activity against the B.1.351 VOC within two-fold of wild-type virus and against SARS-CoV-1 indicate exceptional breadth. Our results support consideration of RFN for SARS-like betacoronavirus vaccine development.

8.
bioRxiv ; 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33791694

RESUMO

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine in nonhuman primates (NHPs). High-dose (50 µ g) SpFN vaccine, given twice within a 28 day interval, induced a Th1-biased CD4 T cell helper response and a peak neutralizing antibody geometric mean titer of 52,773 against wild-type virus, with activity against SARS-CoV-1 and minimal decrement against variants of concern. Vaccinated animals mounted an anamnestic response upon high-dose SARS-CoV-2 respiratory challenge that translated into rapid elimination of replicating virus in their upper and lower airways and lung parenchyma. SpFN's potent and broad immunogenicity profile and resulting efficacy in NHPs supports its utility as a candidate platform for SARS-like betacoronaviruses. ONE-SENTENCE SUMMARY: A SARS-CoV-2 Spike protein ferritin nanoparticle vaccine, co-formulated with a liposomal adjuvant, elicits broad neutralizing antibody responses that exceed those observed for other major vaccines and rapidly protects against respiratory infection and disease in the upper and lower airways and lung tissue of nonhuman primates.

9.
Microb Pathog ; 137: 103742, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31513897

RESUMO

Low molecular mass penicillin binding proteins (LMM PBP) are bacterial enzymes involved in the final steps of peptidoglycan biosynthesis. In Escherichia coli, most LMM PBP exhibit dd-carboxypeptidase activity, are not essential for growth in routine laboratory media, and contributions to virulent phenotypes remain largely unknown. The Francisella tularensis Schu S4 genome harbors the dacD gene (FTT_1029), which encodes a LMM PBP with homology to PBP6b of E. coli. Disruption of this locus in the fully virulent Schu S4 strain resulted in a mutant that could not grow in Chamberlain's Defined Medium and exhibited severe morphological defects. Further characterization studies demonstrated that the growth defects of the dacD mutant were pH-dependent, and could be partially restored by growth at neutral pH or fully restored by genetic complementation. Infection of murine macrophage-like cells showed that the Schu S4 dacD mutant is capable of intracellular replication. However, this mutant was attenuated in BALB/c mice following intranasal challenge (LD50 = 603 CFU) as compared to mice challenged with the parent (LD50 = 1 CFU) or complemented strain (LD50 = 1 CFU). Additionally, mice that survived infection with the dacD mutant showed significant protection against subsequent challenge with the parent strain. Collectively, these results indicate that the DacD protein of F. tularensis is essential for growth in low pH environments and virulence in vivo. These results also suggest that a PBP mutant could serve as the basis of a novel, live attenuated vaccine strain.


Assuntos
Francisella tularensis/enzimologia , Francisella tularensis/patogenicidade , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Tularemia/imunologia , Animais , Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Linhagem Celular , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Francisella tularensis/genética , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas de Ligação às Penicilinas , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Tularemia/microbiologia , Vacinas Atenuadas/imunologia , Virulência , Fatores de Virulência/genética
10.
Sci Adv ; 5(7): eaaw9535, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309159

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is an important human pathogen. Limited evidence suggests that antibodies can protect humans against lethal CCHFV disease but the protective efficacy of antibodies has never been evaluated in adult animal models. Here, we used adult mice to investigate the protection provided against CCHFV infection by glycoprotein-targeting neutralizing and non-neutralizing monoclonal antibodies (mAbs). We identified a single non-neutralizing antibody (mAb-13G8) that protected adult type I interferon-deficient mice >90% when treatment was initiated before virus exposure and >60% when administered after virus exposure. Neutralizing antibodies known to protect neonatal mice from lethal CCHFV infection failed to confer protection regardless of immunoglobulin G subclass. The target of mAb-13G8 was identified as GP38, one of multiple proteolytically cleaved glycoproteins derived from the CCHFV glycoprotein precursor polyprotein. This study reveals GP38 as an important antibody target for limiting CCHFV pathogenesis and lays the foundation to develop immunotherapeutics against CCHFV in humans.


Assuntos
Anticorpos Monoclonais Murinos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Camundongos , Camundongos Knockout
11.
PLoS One ; 13(11): e0208277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30500862

RESUMO

Mouse models have been essential to generate supporting data for the research of infectious diseases. Burkholderia pseudomallei, the etiological agent of melioidosis, has been studied using mouse models to investigate pathogenesis and efficacy of novel medical countermeasures to include both vaccines and therapeutics. Previous characterization of mouse models of melioidosis have demonstrated that BALB/c mice present with an acute infection, whereas C57BL/6 mice have shown a tendency to be more resistant to infection and may model chronic disease. In this study, either BALB/c or C57BL/6 mice were exposed to aerosolized human clinical isolates of B. pseudomallei. The bacterial strains included HBPUB10134a (virulent isolate from Thailand), MSHR5855 (virulent isolate from Australia), and 1106a (relatively attenuated isolate from Thailand). The LD50 values were calculated and serial sample collections were performed in order to examine the bacterial burdens in tissues, histopathological features of disease, and the immune response mounted by the mice after exposure to aerosolized B. pseudomallei. These data will be important when utilizing these models for testing novel medical countermeasures. Additionally, by comparing highly virulent strains with attenuated isolates, we hope to better understand the complex disease pathogenesis associated with this bacterium.


Assuntos
Burkholderia pseudomallei/fisiologia , Melioidose/patologia , Animais , Formação de Anticorpos , Austrália/epidemiologia , Brônquios/imunologia , Brônquios/microbiologia , Brônquios/patologia , Burkholderia pseudomallei/patogenicidade , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Melioidose/sangue , Melioidose/epidemiologia , Melioidose/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tailândia/epidemiologia , Virulência
12.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111561

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hepatic injury in humans. However, the mechanism(s) causing this damage is poorly characterized. CCHFV produces an acute disease, including liver damage, in mice lacking type I interferon (IFN-I) signaling due to either STAT-1 gene deletion or disruption of the IFN-I receptor 1 gene. Here, we explored CCHFV-induced liver pathogenesis in mice using an antibody to disrupt IFN-I signaling. When IFN-I blockade was induced within 24 h postexposure to CCHFV, mice developed severe disease with greater than 95% mortality by 6 days postexposure. In addition, we observed increased proinflammatory cytokines, chemoattractants, and liver enzymes in these mice. Extensive liver damage was evident by 4 days postexposure and was characterized by hepatocyte necrosis and the loss of CLEC4F-positive Kupffer cells. Similar experiments in CCHFV-exposed NOD-SCID-γ (NSG), Rag2-deficient, and perforin-deficient mice also demonstrated liver injury, suggesting that cytotoxic immune cells are dispensable for hepatic damage. Some apoptotic liver cells contained viral RNA, while other apoptotic liver cells were negative, suggesting that cell death occurred by both intrinsic and extrinsic mechanisms. Protein and transcriptional analysis of livers revealed that activation of tumor necrosis factor superfamily members occurred by day 4 postexposure, implicating these molecules as factors in liver cell death. These data provide insights into CCHFV-induced hepatic injury and demonstrate the utility of antibody-mediated IFN-I blockade in the study of CCHFV pathogenesis in mice.IMPORTANCE CCHFV is an important human pathogen that is both endemic and emerging throughout Asia, Africa, and Europe. A common feature of acute disease is liver injury ranging from mild to fulminant hepatic failure. The processes through which CCHFV induces severe liver injury are unclear, mostly due to the limitations of existing small-animal systems. The only small-animal model in which CCHFV consistently produces severe liver damage is mice lacking IFN-I signaling. In this study, we used antibody-mediated blockade of IFN-I signaling in mice to study CCHFV liver pathogenesis in various transgenic mouse systems. We found that liver injury did not depend on cytotoxic immune cells and observed extensive activation of death receptor signaling pathways in the liver during acute disease. Furthermore, acute CCHFV infection resulted in a nearly complete loss of Kupffer cells. Our model system provides insight into both the molecular and the cellular features of CCHFV hepatic injury.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Febre Hemorrágica da Crimeia/patologia , Hepatócitos/patologia , Interferon Tipo I/antagonistas & inibidores , Células de Kupffer/citologia , Falência Hepática Aguda/patologia , Fígado/patologia , Animais , Anticorpos Bloqueadores/imunologia , Linhagem Celular , Chlorocebus aethiops , Citocinas/sangue , Modelos Animais de Doenças , Hepatócitos/virologia , Humanos , Interferon Tipo I/imunologia , Células de Kupffer/virologia , Fígado/lesões , Fígado/virologia , Falência Hepática Aguda/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células Vero
13.
J Infect Dis ; 212 Suppl 2: S282-94, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25943199

RESUMO

A major obstacle in ebolavirus research is the lack of a small-animal model for Sudan virus (SUDV), as well as other wild-type (WT) ebolaviruses. Here, we expand on research by Bray and by Lever et al suggesting that WT ebolaviruses are pathogenic in mice deficient for the type 1 interferon (IFN) α/ß receptor (IFNα/ßR-/-). We examined the disease course of several WT ebolaviruses: Boneface (SUDV/Bon) and Gulu variants of SUDV, Ebola virus (EBOV), Bundibugyo virus (BDBV), Taï Forest virus, and Reston virus (RESTV). We determined that exposure to WT SUDV or EBOV results in reproducible signs of disease in IFNα/ßR-/- mice, as measured by weight loss and partial lethality. Vaccination with the SUDV or EBOV glycoprotein (GP)-expressing Venezuelan equine encephalitis viral replicon particle vaccine protected these mice from SUDV/Bon and EBOV challenge, respectively. Treatment with SUDV- or EBOV-specific anti-GP antibodies protected mice from challenge when delivered 1-3 days after infection. Serial sampling experiments revealed evidence of disseminated intravascular coagulation in the livers of mice infected with the Boneface variant of SUDV, EBOV, and BDBV. Taken together, these data solidify the IFNα/ßR-/- mouse as an important and useful model for the study of WT EBOV disease.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Receptor de Interferon alfa e beta/deficiência , Virulência/fisiologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Vacinas contra Ebola/imunologia , Ebolavirus/metabolismo , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Replicon/imunologia , Vacinação/métodos , Células Vero/virologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Virulência/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA