Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 7(72): eabl9330, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687697

RESUMO

Radiotherapy (RT) of colorectal cancer (CRC) can prime adaptive immunity against tumor-associated antigen (TAA)-expressing CRC cells systemically. However, abscopal tumor remissions are extremely rare, and the postirradiation immune escape mechanisms in CRC remain elusive. Here, we found that irradiated CRC cells used ATR-mediated DNA repair signaling pathway to up-regulate both CD47 and PD-L1, which through engagement of SIRPα and PD-1, respectively, prevented phagocytosis by antigen-presenting cells and thereby limited TAA cross-presentation and innate immune activation. This postirradiation CD47 and PD-L1 up-regulation was observed across various human solid tumor cells. Concordantly, rectal cancer patients with poor responses to neoadjuvant RT exhibited significantly elevated postirradiation CD47 levels. The combination of RT, anti-SIRPα, and anti-PD-1 reversed adaptive immune resistance and drove efficient TAA cross-presentation, resulting in robust TAA-specific CD8 T cell priming, functional activation of T effectors, and increased T cell clonality and clonal diversity. We observed significantly higher complete response rates to RT/anti-SIRPα/anti-PD-1 in both irradiated and abscopal tumors and prolonged survival in three distinct murine CRC models, including a cecal orthotopic model. The efficacy of triple combination therapy was STING dependent as knockout animals lost most benefit of adding anti-SIRPα and anti-PD-1 to RT. Despite activation across the myeloid stroma, the enhanced dendritic cell function accounts for most improvements in CD8 T cell priming. These data suggest ATR-mediated CD47 and PD-L1 up-regulation as a key mechanism restraining radiation-induced immune priming. RT combined with SIRPα and PD-1 blockade promotes robust antitumor immune priming, leading to systemic tumor regressions.


Assuntos
Antígeno CD47 , Neoplasias Colorretais , Animais , Antígenos de Neoplasias , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Antígeno B7-H1 , Antígeno CD47/metabolismo , Neoplasias Colorretais/radioterapia , Humanos , Camundongos , Receptor de Morte Celular Programada 1 , Regulação para Cima
2.
Oncotarget ; 11(51): 4770-4787, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33473260

RESUMO

Most characterized angiogenic modulators are proteolytic fragments of structural plasma and/or matrix components. Herein, we have identified a novel anti-angiogenic peptide generated by the in vitro hydrolysis of the C-terminal moiety of the fibrinogen alpha chain, produced by the snake venom metalloprotease bothropasin (SVMP), a hemorrhagic proteinase in Bothrops jararaca venom. The 14-amino acids peptide (alphastatin-C) is a potent antagonist of basic fibroblast growth factor, induced endothelial cell (HUVEC-CS) proliferation, migration and capillary tube formation in matrigel. It also inhibits cell adhesion to fibronectin. The basis of the antagonism between bFGF and alphastatin-C is elucidated by the inhibition of various bFGF induced signaling pathways and their molecular components modification, whenever the combination of the stimuli is provided, in comparison to the treatment with bFGF only. To corroborate to the potential therapeutic use of alphastatin-C, we have chosen to perform in vivo assays in two distinct angiogenic settings. In chick model, alphastatin-C inhibits chorioallantoic membrane angiogenesis. In mouse, it efficiently reduces tumor number and volume in a melanoma model, due to the impairment of tumor neovascularization in treated mice. In contrast, we show that the alphastatin-C peptide induces arteriogenesis, increasing pial collateral density in neonate mice. alphastatin-C is an efficient new antiangiogenic FGF-associated agent in vitro, it is an inhibitor of embryonic and tumor vascularization in vivo while, it is an arteriogenic agent. The results also suggest that SVMPs can be used as in vitro biochemical tools to process plasma and/or matrix macromolecular components unraveling new angiostatic peptides.

3.
Biomed Pharmacother ; 84: 1019-1028, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27768927

RESUMO

Even with all improvements in both diagnostic and therapeutic techniques, lung cancer remains as the most lethal and prevalent cancer in the world. Therefore, new therapeutic drugs and new strategies of drug combination are necessary to provide treatments that are more efficient. Currently, standard therapy regimen for lung cancer includes platinum drugs, such as cisplatin, oxaliplatin, and carboplatin. Besides of the better toxicity profile of oxaliplatin when compared with cisplatin, peripheral neuropathy remains as a limitation of oxaliplatin dose. This study presents LabMol-12, a new pyridinyl carboxamide derivative with antileishmanial and antichagasic activity, as a new hit for lung cancer treatment, which induces apoptosis dependent of caspases in NCI-H1299 lung cancer cells both in monolayer and 3D culture. Moreover, LabMol-12 allows a reduction of oxaliplatin dose when they are combined, thereby, it is a relevant strategy for reducing the side effects of oxaliplatin with the same response. Molecular modeling studies corroborated the biological findings and suggested that the combined therapy can provide a better therapeutically profile effects against NSCLC. All these findings support the fact that the combination of oxaliplatin and LabMol-12 is a promising drug combination for lung cancer.


Assuntos
Amidas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Piridinas/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/patologia , Modelos Moleculares , Estrutura Molecular , Oxaliplatina , Relação Estrutura-Atividade
4.
Biometals ; 29(1): 39-52, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26582127

RESUMO

Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.


Assuntos
Adenocarcinoma/tratamento farmacológico , Complexos de Coordenação/administração & dosagem , Cobre/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Adenocarcinoma/química , Adenocarcinoma de Pulmão , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Cobre/química , DNA/química , Fibroblastos/efeitos dos fármacos , Flavanonas/administração & dosagem , Flavanonas/química , Hesperidina/administração & dosagem , Hesperidina/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/química
5.
Tumour Biol ; 36(9): 7251-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25894379

RESUMO

Capsaicin, the primary pungent component of the chili pepper, has antitumor activity. Herein, we describe the activity of RPF151, an alkyl sulfonamide analogue of capsaicin, against MDA-MB-231 breast cancer cells. RPF151 was synthetized, and molecular modeling was used to compare capsaicin and RPF151. Cytotoxicity of RPF151 on MDA-MB-231 was also evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis, by flow cytometry, and Western blot analysis of cycle-related proteins were used to evaluate the antiproliferative mechanisms. Apoptosis was evaluated by phosphatidyl-serine externalization, cleavage of Ac-YVAD-AMC, and Bcl-2 expression. The production of reactive oxygen species was evaluated by flow cytometry. RPF151 in vivo antitumor effects were investigated in murine MDA-MB-231 model. This study shows that RPF151 downregulated p21 and cyclins A, D1, and D3, leading to S-phase arrest and apoptosis. Although RPF151 has induced the activation of TRPV-1 and TRAIL-R1/DR4 and TRAIL-2/DR5 on the surface of MDA-MB-231 cells, its in vivo antitumor activity was TRPV-1-independent, thus suggesting that RPF151 should not have the same pungency-based limitation of capsaicin. In silico analysis corroborated the biological findings, showing that RPF151 has physicochemical improvements over capsaicin. Overall, the activity of RPF151 against MDA-MB-231 and its lower pungency suggest that it may have a relevant role in cancer therapy.


Assuntos
Neoplasias da Mama/genética , Capsaicina/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Capsaicina/análogos & derivados , Capsaicina/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Proteínas de Neoplasias/genética , Ligação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Eur J Med Chem ; 96: 330-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25899337

RESUMO

Chagas disease affects around 8 million people worldwide and its treatment depends on only two nitroheterocyclic drugs, benznidazole (BZD) and nifurtimox (NFX). Both drugs have limited curative power in chronic phase of disease. Nifuroxazide (NF), a nitroheterocyclic drug, was used as lead to design a set of twenty one compounds in order to improve the anti-Trypanosoma cruzi activity. Lipinski's rules were considered in order to support drug-likeness designing. The set of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides was assayed against three T. cruzi strains, which represent the discrete typing units more prevalent in human patients: Y (TcII), Silvio X10 cl1 (TcI), and Bug 2149 cl10 (TcV). All the derivatives, except one, showed enhanced trypanocidal activity against the three strains as compared to BZD. In the Y strain 62% of the compounds were more active than NFX. The most active compound was N'-((5-nitrofuran-2-yl) methylene)biphenyl-4-carbohydrazide (C20), which showed IC50 values of 1.17 ± 0.12 µM; 3.17 ± 0.32 µM; and 1.81 ± 0.18 µM for Y, Silvio X10 cl1, and Bug 2149 cl10 strains, respectively. Cytotoxicity assays with human fibroblast cells have demonstrated high selectivity indices for several compounds. Exploratory data analysis indicated that primarily topological, steric/geometric, and electronic properties have contributed to the discrimination of the set of investigated compounds. The findings can be helpful to drive the designing, and subsequently, the synthesis of additional promising drugs against Chagas disease.


Assuntos
Antiprotozoários/farmacologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Desenho de Fármacos , Hidrazinas/farmacologia , Hidrazonas/química , Nitrofuranos/química , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
7.
Biochimie ; 99: 195-207, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24355203

RESUMO

Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Here, we have demonstrated for the first time that dillapiole has broad cytotoxic effects against a variety tumor cells. For instance, we found that it can act as a pro-oxidant compound through the induction of reactive oxygen species (ROS) release in MDA-MB-231 cells. We also demonstrated that dillapiole exhibits anti-proliferative properties, arresting cells at the G0/G1 phase and its antimigration effects can be associated with the disruption of actin filaments, which in turn can prevent tumor cell proliferation. Molecular modeling studies corroborated the biological findings and suggested that dillapiole may present a good pharmacokinetic profile, mainly because its hydrophobic character, which can facilitate its diffusion through tumor cell membranes. All these findings support the fact that dillapiole is a promising anticancer agent.


Assuntos
Compostos Alílicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Dioxóis/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Compostos Alílicos/química , Compostos Alílicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Sinalização do Cálcio , Caspase 3/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Dioxóis/química , Dioxóis/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Simulação de Dinâmica Molecular , Piper/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
8.
Toxicol Appl Pharmacol ; 266(3): 385-98, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23238560

RESUMO

Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle at the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent.


Assuntos
Adenocarcinoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Capsaicina/análogos & derivados , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Apoptose/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Capsaicina/síntese química , Capsaicina/química , Capsaicina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Fragmentação do DNA , Feminino , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Células MCF-7 , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Microscopia Confocal , Microtúbulos/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA